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ABSTRACT

In wireless sensor networks, many monitoring problems can
be cast in the form of distributed estimation. If the data links
from the sensor nodes to the fusion center have limited capac-
ity, there is a tradeoff between estimation precision and trans-
mission rate. This kind of decentralized estimation system
is equivalent to the so-called indirect multiterminal source
coding problem, and the Berger-Tung inner bound is the best
known achievable rate region boundary. In this paper, we at-
tempt to evaluate the Berger-Tung sum rate for a vector source
with correlated components. First we formulate the sum rate
as a nonconvex optimization problem with a distortion con-
straint. Then we propose a method to find an approximate
solution. Numerical experiments show the approximate so-
lution is accurate if the required distortion level is relatively
small. Its appropriateness is also verified by simulation re-
sults based on practical quantizer design.

Index Terms— Indirect multiterminal source coding, dis-
tributed estimation, CEO problems, rate distortion theory

1. INTRODUCTION

Wireless sensor networks have been the subject of active re-
search for the past decade, and they find many uses in civil,
industrial, commercial and military applications. Such net-
works are often used for distributed estimation, in which ge-
ographically distributed sensors make measurements or local
estimates and forward them to a fusion center, which con-
ducts the processing necessary to extract useful information
from the reported data. In practice, the local measurements
have to be quantized prior to transmission, and there is clearly
a tradeoff between the level of quantization (or equivalently
the sensor’s transmission rate) and the final estimation accu-
racy. With knowledge of the required estimation accuracy and
the statistical characteristics of the source and noise, the fu-
sion center can optimally determine the sensors’ individual
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transmission rates and feed this information back to the sen-
sor nodes in order to efficiently use the available computing
and communication resources.

This kind of system is equivalent to the indirect multiter-
minal source coding problem, which was first studied in [1]
and referred to as the central estimation officer (CEO) prob-
lem. For memoryless Gaussian scalar sources, the rate re-
gion of the CEO problem has been completely characterized
in [2, 3, 4]. The authors of [5] gave a new proof for the lower
bound of the CEO problem by utilizing the semidefinite par-
tial order of the distortion covariance matrices. In [6], the
CEO model was extended to include the vector source case.
Xiao and Luo in [7] proposed a numerical method to eval-
uate the performance for Gaussian vector sources, but they
assume the components of the source vector are uncorrelated.
In this paper, we attempt to evaluate the Berger-Tung sum
rate for a vector source with correlated components. First,
we formulate the sum rate calculation as a nonconvex opti-
mization problem with a distortion constraint. Using Schur’s
complement, we propose a method to find an approximate
solution. Numerical experiments show the approximate solu-
tion is nearly optimal if the target distortion level is relatively
small, and thus it is useful for system designs with a high-
accuracy requirement. We then implement the multiterminal
source coding model using trellis coded vector quantization,
and the subsequent empirical simulation results also verify the
validity of the approximate solution.

The rest of the paper is organized as follows. In Section 2,
we describe the system model and formulate the sum-rate op-
timization problem for the two-terminal source coding case.
Section 3 then proposes a method to find an approximate so-
lution. Simulation results are presented in Section 4 for cases
with either symmetric or asymmetric sensor noise. Section 5
summarizes the paper and discusses potential future work.

2. SYSTEM MODEL

Without loss of generality, we assume there are two sensor
nodes in the system. The analysis in this paper can be natu-
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Fig. 1. Indirect two-terminal source coding

rally extended to the case of more than two nodes. A block
diagram model is illustrated in Fig. 1.

The fusion center is interested in recovering the real-
valued source vector sequence x(t), t = 1, . . . ,∞, where
every x(t) is an i.i.d. Gaussian random vector with zero
mean. The corresponding covariance matrix Cx is assumed
in general to be non-diagonal, i.e., the components of x(t)
are correlated. We use vi(t) ∼ N (0,Cvi

) to indicate that
the measurement noise (local estimation error) is real-valued
zero-mean Gaussian with covariance Cvi

, and we assume
vi(t) is also i.i.d. in time. The observation at sensor i is
given by yi(t) = x(t) + vi(t), and x̂(t) is the estimate
obtained at the fusion center. The distortion is defined as
limn→∞

1
n

∑n

t=1 ‖x(t)− x̂(t)‖2.
Based on [4, 6, 7], if there exist auxiliary randomvariables

w1 and w2 such that wi → yi → (x,y{1,2}\i,w{1,2}\i)

forms a Markov chain, and E
{
‖x− x̂(w1,w2)‖

2
}

is no
greater than the distortion level D, the Berger-Tung achiev-
able rate region is the convex hull of

R(w1,w2) = {(R1, R2) | R1 ≥ I(y1;w1|w2),

R2 ≥ I(y2;w2|w1),

R1 +R2 ≥ I(y1,y2;w1,w2)}. (1)

In other words, the minimum achievable sum rate can be ob-
tained through minimizing I(y1,y2;w1,w2). As in [4, 6, 7],
we assume the auxiliary random variables are Gaussian and
can be further expressed through forward test channels:

w1 = A1y1 + z1 (2)

w2 = A2y2 + z2. (3)

Here Ai is a matrix and zi ∼ N (0,Czi) is independent of
yi. In terms of minimum distortion, the best estimate of x
from wi can be obtained using the MMSE estimator x̂ =
E(x|w1,w2). We use x̃ to denote the estimation error and
Cx̃ its covariance matrix, so that the distortion requirement
E
{
‖x− x̂(w1,w2)‖2

}
≤ D is equivalent to tr (Cx̃) ≤ D.

If we let

Qi =
(
Cvi

+A−1
i Czi(A

−1
i )T

)−1
, (4)

then the covariance of x̃ is

Cx̃ = (C−1
x +Q1 +Q2)

−1. (5)

The Gaussianity of yi and wi results in

I(y1,y2;w1,w2) =
1

2
log

det(Cy) det(Cw)

det(Cyw)
, (6)

where Cy, Cw, and Cyw are the covariance matrices of
(yT

1 yT
2 )

T , (wT
1 wT

2 )
T and (yT

1 yT
2 wT

1 wT
2 )

T , respectively.
After a series of mathematical manipulations, we end up with

I(y1,y2;w1,w2)

=
1

2
log

det(C−1
x +Q1 +Q2) det(Cx)

det(I−Q1Cv1
) det(I−Q2Cv2

)
. (7)

So the minimal Berger-Tung sum rate is the result of the fol-
lowing minimization:

min
Q1,Q2

1

2
log

det(C−1
x +Q1 +Q2) det(Cx)

det(I−Q1Cv1
) det(I−Q2Cv2

)
(8)

s.t. tr
(
(C−1

x +Q1 +Q2)
−1

)
≤ D

Q1 � 0,Q2 � 0.

3. APPROXIMATE SOLUTION

The optimization problem (8) is nonconvex and obtaining an
exact solution is difficult. To find an approximate solution,
we first divide the objective function into two parts,

I(y1,y2;w1,w2) =

1

2
log

1

det(I−Q1Cv1
) det(I−Q2Cv2

)

+
1

2
log

det(Cx)

det(C−1
x +Q1 +Q2)−1

. (9)

The minimization of the first term can be expressed as

min
Q1,Q2

1

2
log

1

det(I−Q1Cv1
) det(I−Q2Cv2

)
(10)

s.t. tr
(
(C−1

x +Q1 +Q2)
−1

)
≤ D

Q1 � 0,Q2 � 0,

which is still not convex in the constraints. However, as we
will see later in this section, we can find the exact solution to
this subproblem, which can be plugged into (7) to compute a
sum rate.

In addition, we will see that the second term has a lower
bound, which in turn bounds the sum rate in (7). Numerical
experiments show that the computed sum rate is extremely
close to the sum rate bound for small target distortions. So
in this range the solution to problem in (10) can be used as a
good approximation for the Berger-Tung sum rate problem.
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To solve (10), we replace the distortion constraint with a
stricter matrix constraint D that bounds the error covariance:
(C−1

x +Q1 +Q2)
−1 	 D. Using Schur’s complement, it is

equivalent to require(
C−1

x +Q1 +Q2 I

I D

)
� 0. (11)

The optimization problem (10) can then be recast as

min
Q1,Q2,D

1

2
log

1

det(I−Q1Cv1
) det(I−Q2Cv2

)
(12)

s.t. tr (D) ≤ D (13)(
C−1

x +Q1 +Q2 I

I D

)
� 0 (14)

D � 0 (15)

Q1 � 0 (16)

Q2 � 0. (17)

With this modification, the problem is now a convex problem
and can be efficiently solved. Generally speaking, the solu-
tions to (10) and (12) are equal only when the constraints (13)
and (14) are simultaneously fulfilled with equality. Otherwise
the two solutions are not necessarily the same. In the proof of
the following theorem, we will see that in fact the solution to
(12) also minimizes (10).

Theorem 1. The optimal Q1 and Q2 of problem (12) also
minimize (10).

Proof. The first order derivatives of the Lagrangian L with
respect to the optimization variables are

∂L

∂Q1
=

(
Cv1

(I−Q1Cv1
)−1

)
−Λ1 −ΛTL

4 (18)

∂L

∂Q2
=

(
Cv2

(I−Q2Cv2
)−1

)
−Λ2 −ΛTL

4 (19)

∂L

∂D
= λI−Λ3 −ΛBR

4 , (20)

where λ ≥ 0,Λi � 0 are the Lagrange multipliers, and

Λ4 =

(
ΛTL

4 ΛTR
4

ΛBL
4 ΛBR

4

)
. (21)

The KKT conditions are

tr(Q1Λ1) = 0 (22)

tr(Q2Λ2) = 0 (23)

tr(DΛ3) = 0 (24)

λ(tr(D)−D) = 0 (25)

tr

((
C−1

x +Q1 +Q2 I

I D

)
Λ4

)
= 0. (26)

From (24) it can be shown that Λ3 = 0 and therefore

λI−ΛBR
4 = 0. (27)
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Fig. 2. Approximate solution and the lower bound

If λ > 0, the above equation results in a nonsingular ΛBR
4 .

From (26) we have

(C−1
x +Q1 +Q2)DΛBR

4 = ΛBR
4 , (28)

so in this case D = (C−1
x +Q1+Q2)

−1. Since λ > 0, equa-
tion (25) requires tr(D) = D. In other words the constraints
(13) and (14) are simultaneously fulfilled with equality, so the
solutions to (10) and (12) are equivalent.

If λ = 0, from (27) we have ΛBR
4 = 0. Further by using

(18), (19), (22) and (23), we obtain Q1 = Q2 = 0. This
solution makes the minimal value of (12) equal zero. Due to
the positive semidefiniteness of Q1 and Q2, we have (C−1

x +
Q1 +Q2)

−1 	 Cx. Therefore

D ≥ tr(D) ≥ tr(C−1
x +Q1 +Q2)

−1 = tr(Cx). (29)

For the D ≥ tr(Cx) case, it is easy to verify the minimal
value of (10) is also zero. In fact, this corresponds to the triv-
ial case where there is no data transmission from the sensor
nodes to the fusion center.

In summary, no matter what value λ has, the solutions to
(10) and (12) are equivalent.

Plugging the Q1 and Q2 of Theorem 1 into (7), we obtain
an approximation of the Berger-Tung sum rate. The second
term in (9) is lower bounded by 1

2 log
det(Cx)
det(D) . From the prop-

erty det(D) ≤
(
1
n
tr(D)

)n
and the fact that tr(D) ≤ D, the

sum rate is lower bounded by

1

2
log

det(Cx)(
D
n

)n
det(I−Q1Cv1

) det(I−Q2Cv2
)
. (30)

Our numerical experiments consistently show that for
small distortions D, the approximate sum rate and the bound
are very close. So in this range the solution in Theorem 1 can
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be regarded as a good approximation to the original problem.
An example is given in Fig. 2, where

Cx =

(
0.99 0.9
0.9 0.99

)
and Cv1

= Cv2
=

(
0.01 0
0 0.01

)
.

(31)

4. NUMERICAL RESULTS

In this section, we use practical quantizers to verify the pro-
posed solution in Section 3. As reported in the literature, the
Berger-Tung achievable sum rate can be approached by us-
ing powerful quantizers and Slepian-Wolf encoders. Fig. 3
shows the coding chain. In the figure, Q, EC, and SW stand
for quantizer, entropy encoder, and Slepian-Wolf encoder re-
spectively. We use a trellis coded vector quantizer (TCVQ) in
our simulation, and ideal entropy and Slepian-Wolf encoding
are assumed. The optimal Q1 and Q2 in Theorem 1 are used
in the MMSE calculation.

Fig. 4 shows the result of a case where the noise power is
the same at the two sensors. The dimension of the source vec-
tor is two. The correlation between the two components and
the noise power is characterized in (31). The target distortion
level is 0.0102. The dashed line corresponds the sum-rate
lower bound obtained from (30). The solid curve describes
the boundary of (1) when the proposed approximate solution
is adopted. The cross point is the rate pair resulting from the
empirical simulations. Fig. 5 shows the result of a case with
asymmetric noise. The parameters are the same as before, ex-
cept the noise power at node 2 is 0.04. The target distortion
level is 0.0166. Both of the simulation results indicate that
the approximate solution is very near the optimal sum rate.

5. CONCLUSION

In this paper, we found an approximate solution to the vec-
tor Berger-Tung achievable sum rate problem for a correlated
Gaussian source. Numerical experiments show it is near op-
timal if high estimation accuracy is required. Furthermore,
we used TCVQ to implement the multiterminal source cod-
ing model, and our empirical simulation results also indicate

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

+

+

Sum rate loss
0.28b/dim/sample

R1

R2

Fig. 4. Symmetric noise

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

+

Sum rate loss
0.16b/dim/sample

R1

R2

Fig. 5. Asymmetric noise

the near optimality of the approximate solution. Possible fu-
ture work includes examining the performance gap that re-
sults from using an optimal LDPC encoder for the Slepian-
Wolf encoder. In addition, the use of linear MMSE estimators
in the coding chain is only optimal if the quantization noise
is i.i.d. Gaussian. Since this assumption cannot be guaran-
teed in practice, finding non-linear estimators to improve the
estimation performance is also of interest.
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