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ABSTRACT

Decentralized physics-based field estimation in clustered sen-
sor networks requires the exchange of state vectors between
neighboring clusters. We reduce the communication overhead
between clusters by using a differential encoding of state vec-
tors that exploits the spatio-temporal field dependencies. This
encoding involves a Kalman prediction step that builds on
the state-space equations governing the field’s spatio-temporal
evolution. The Kalman step keeps the computational complex-
ity low. Simulation results for an acoustic field demonstrate
the approach.

Index Terms— distributed parameter estimation, Kalman
filter, differential encoding, linear prediction, acoustic field

1. INTRODUCTION

1.1. Background

In this paper we address the communication overhead in sen-
sor networks (SN) which sequentially infer states of a physical
field in a decentralized fashion, i.e., without fusion center. This
type of estimation problems has been studied in [1–7]. From
these, [6, 7] use numerical methods to approximate the under-
lying partial differential equation (PDE) and reformulate the
resulting difference equation as a state space model. For decen-
tralized field estimation, the state space model is partitioned
into subsystems that correspond to sensor clusters. In the field
estimation algorithm, the clusters exchange elements of the
state vector that correspond to the cluster boundaries. The
communication overhead (analyzed in [7]) resulting from this
state vector exchange is addressed by our paper. As an illus-
trative example we use a 2D acoustic field in a hallway along
with an estimator for the position of an acoustic source.

Specifically, we propose to use differential encoding based
on a Kalman predictor that exploits the spatio-temporal field
correlation via the underlying state space model. For details on
linear prediction of discrete-time vector processes see e.g. [8, 9].
With differential encoding, only the difference between the
predicted signal and the measurement is transmitted and the
receiver reconstructs the original signal using the prediction
error. Ideally, the prediction error is a white innovation signal
and hence has a flat power spectrum.
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and Technology Fund (WWTF).

1.2. Contributions and Outline

Our paper proposes a differential encoding scheme that
merges the field estimation algorithm with the state prediction
and exploits the strong spatial and temporal correlations to
whiten/decorrelate the signal to be communicated between
clusters.Due to the discretized PDE, the global field is mod-
eled by an autoregressive process of order one and thus is
predictable. However, using the state space model to this end
is not trivial in the context of decentralized estimation. In this
case, the hyperbolic structure of the PDE becomes relevant
and the order increases with the iteration of the sequential
estimator. Our main contributions is a modified Kalman filter
to whiten the state vectors based on the state space model.
The white innovations/prediction error signal has a smaller
dynamic range and hence can be sent using less transmit
power. This is particularly desirable in battery-operated wire-
less sensor networks. However, the actual source encoding
(i.e., quantization and bit allocation) of the innovations signal
is beyond the scope of this paper.

2. PROBLEM DEFINITION

2.1. Centralized system

In the sequel, we focus on a 2D acoustic field in a hallway
described by the scalar wave equation [10]

1

c2
∂2
t p(r, t)−∇2p(r, t) = s(r, t), r ∈ Ω. (1)

This is a linear hyperbolic second-order partial differential
equation (PDE), where p(r, t) denotes pressure dependent on
location r and time t, ∂t is the partial derivative with respect
to time, ∇2 is the Laplace operator, c is the sound speed, s(r, t)
is a (random) source, and Ω ⊂ R

2 is the 2-dimensional region
of interest. For the boundary and initial conditions we refer to
Section 4.

We define q(r, t) = ∂tp(r, t) and approximate the wave
equation via a finite difference method (FDM) [10]. This results
in the state transition model[

qk+1

pk+1

]
=

[
ΦΦΦ11 ΦΦΦ12

ΔtIII III

]
︸ ︷︷ ︸

ΦΦΦFDM

[
qk

pk

]
+Δt c

2

[
sk

0

]
, (2)

where the pressure vector is defined as pk = vec{PPP k} with
[PPP k]ij = p(iΔr, jΔr, kΔt), i, j, k ∈ N and similar for qk and
source sk. The set of tuples (i, j), termed nodes, is denoted by
L = {(i, j) ∈ N

2 : (iΔr, jΔr) ∈ Ω} (cf. Figure 1a).
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Fig. 1. The discretized area L with disjoint boundary ∂L =⋃4
�=1 ∂L� is shown in (a). The nodes correspond to sample

points of the field. In (b) the area is decomposed into two
clusters corresponding to L(1) and L(2). Various neighbor sets
are defined in this sketch.

The model (2) consists of two parts:

• The matrix ΦΦΦFDM maps the state [qT
k pT

k ]
T deterministi-

cally to its prediction [qT
k+1|k pT

k+1|k]
T in the following

time step. (Note that an optimal predictor additionally
considers the redundancy of the source.)

• The second term on the right-hand side involving sk

perturbs the state vectors and represents the innovations
process.

2.2. Decentralized System

We now partition the nodes L into two disjoint clusters
L(1),L(2) ⊂ L. The symbol¯will be used to denote the ele-
ments of a vector that correspond to nodes along the boundary
between both the clusters and ˇ signifies that second-order
boundary nodes, i.e., neighbors of boundary nodes, are also
included in the respective subvector. Figure 1b specifies the
various neighborhood sets used in what follows.

Assuming the source to be far away from the boundary, we
neglect the source term in the decentralized setup. Due to the
sparse structure of the global matrixΦΦΦ12 (nodes depend only on
their neighbors), only the elements of p̄k need to be exchanged

Our discussion extends straightforwardly to the case of more than
two clusters.

between the clusters for the decentralized estimation of the
field [7]. For this state subvector, (2) implies

p̄k+1 = p̄k +ΔtΦ̄ΦΦ11q̄k−1 +ΔtΦ̌ΦΦ12p̌k−1 . (3)

Here sk does not denote the source of innovation as in the cen-
tral case, but rather the unknown pressure in the neighborhood
Ň \ N̄ . Note that no approximation is performed. The main
idea of this paper is to signal only the innovations vector

ε̄k+1 = p̄k+1 − p̄k+1|k (4)

rather than the actual state vector p̄k+1. This is advantageous
since ε̄k+1 can be better compressed because it is white and has
smaller power. The receiving cluster can revert the differential
encoding by adding the received innovation vector to the local
prediction, i.e. p̄k+1 = ε̄k+1 + p̄k+1|k.

3. PREDICTION BY THE KALMAN FILTER

Linear prediction theory [9] exploits the statistical structure of
the source which in our context corresponds to the stochastic
transition model (2). But due to (3) it does not seem feasible
without high prediction order and with the unknown second
order neighbor states. Instead we use the computationally
efficient Kalman filtering (KF).

The KF [9,11–14] falls within the scope of Bayesian estimators
and is a combination of a sequential linear minimum mean square
error estimator combined with a state space model, ie. a state
transition model of random states as in (2) with additive noise
and a observation model, respectively. It estimates the states
through observations yk and is optimum if and only if the
priors and noise are Gaussian.

3.1. Model of the decentralized system

We now propose the use of the KF to predict the states p̄k+1.
For this, let the states of the KF be [q̄T

k p̌T
k ]

T with the associated
transition model[

q̄k+1

p̌k+1

]
=

[
Φ̄ΦΦ11 Φ̌ΦΦ12

ΔtĪII ǏII

] [
q̄k

p̌k

]
+GGGwk , (5a)

where wk is the driving noise. The matrix GGG : R|Ň\N̄ | → R
|Ň |

ensures that the driving noise is only added to pressure states
in the second-order cluster boundary Ň \ N̄ . These states are
modeled as unknowns and are estimated by the KF in both
clusters in the same way. We note that the linear approach
underlying the KF is optimal only if wk is Gaussian.

The aim of matrix GGG combined with an observation model
is to maintain correct state subvectors p̄k. This in turn improves
the estimates of their neighbors Ň \ N̄ . With this in mind, let
the observation model of cluster m be

y
(m)
k+1 = p̄k+1

(
p̄
(m)
k+1, ε

(m)
k+1, p̄

(m)

k+1|k
)
. (5b)

where cluster m is the neighbor of cluster m. Here p̄k+1(·)
is viewed as a vector-valued linear function depending on
the own pressure states p̄

(m)
k+1 at the boundary and the sum

ε
(m)
k+1+p̄

(m)

k+1|k (received signal plus prediction). Its sole purpose
is to shift the elements of the vectors appropriately. As a direct

2662



consequence of the measurement model, the correction step of
the KF adjusts p̄k+1|k to the exact values.

3.2. Decentralized predictive encoding algorithm

In the following, the subscript k|k emphasizes that estimates
at time k are based on observations up to time k. The complete
state vector [qT

1 pT
1 ]

T and p0 with q1 = q1(p0) are assumed
to be known as prior for the KF and the covariance matrices
are estimated via the empirical covariance function. The latter
allows the computation of the Kalman gain matrixKKKk for every
iteration k > 1.

With our method, cluster m performs the following steps
starting at time k = 1 (decompositions and compositions of
vectors are not stated explicitly):

1. Compute the prediction
[
q̄k+1|k
p̌k+1|k

]
=

[
Φ̄ΦΦ11 Φ̌ΦΦ12

ΔtĪII ǏII

] [
q̄k|k
p̌k|k

]
. (6a)

2. Determine the innovation vector

ε
(m)
k+1 = p̄

(m)
k+1 − p̄

(m)

k+1|k. (6b)

3. Send ε
(m)
k+1 to cluster m and receive ε

(m)
k+1 from cluster m.

4. Correct the prediction via
[
q̄k+1|k+1

p̌k+1|k+1

]
=

[
q̄k+1|k
p̌k+1|k

]
+KKKkε

(m)
k+1. (6c)

5. Use p̄k+1 = p̄k+1|k+1 for the decentralized estimation of

the field [p
(m)T
k+2 p

(m)T
k+2 ]T.

6. Increase k by one and go to step 1.

The predictor (6) scales straightforwardly with the number
Ň of the neighboring clusters. A larger number of neighbor-
hoods entails a larger number of unknown pressure states
which have to be estimated in eeach time step. This increases
the dimension of the state vector [q̄T

k p̌T
k ]

T in (5a) but still
exploits the structure of the global ΦΦΦ12.

4. NUMERICAL RESULTS

The level of redundancy in a random signal is specified by the
autocorrelation and, equivalently, the power spectral density
(PSD). For a white signal, the former equals the delta function
while the latter is a constant. Beyond that, several methods
are used to show the flatness of a PSD and to define a distance
between two of them. We recall briefly those definitions.

Let S(ω) denote the PSD of a discrete time process defined
on [−π, pi). In the sequel we use the notion of the distance
between two PSDs S1 and S2 from [15]. There, Georgiou’s
distance d(S1, S2) is defined by

ln

((
1

2π

∫ π

−π

S1(ω)

S2(ω)
dω

)(
1

2π

∫ π

−π

S2(ω)

S1(ω)
dω

))
. (7a)

It induces a metric tensor in a manifold P of PSDs (up to scaling
factors). Integration of the metric tensor over a geodesic line

between two PSDs gives the path length between them in the
manifold,

�(S1, S2) = var
ω
{lnS1(ω)− lnS2(ω)} . (7b)

To measure the whiteness of a signal we choose one of the PSDs
to be constant. In addition, we consider a traditional metric
used to measure the flatness of a PSD [8],

fl(S1) =
e

1
2π

∫ π
−π lnS1(ω)dω

1
2π

∫ π

−π
S1(ω)dω

. (8)

As illustrative example, a 2-D rectangular hallway from [7]
is simulated using the FDM from above. This hallway and
thus the nodes are portioned into two clusters in common
with Figure 1. The source sk is modelled by a Ricker wavelet
with additive white Gaussian noise. All parameter values are
summarized in Table 1.

In this example, 104 time steps were simulated with the
goal of comparing the statistics of the original signal p̄(1)

k and
the whitened signal ε(1)

k , k = 1, . . . , 104. Figure 2 presents the
temporal and spatial empirical autocorrelation functions (ACF)
averaged over space and time, respectively for the actual state
vector and the innovations vector (in the temporal case, the
source ACF is also shown). The (small) residual noise in Fig-
ure 2a corresponds to estimation errors of the KF and is ne-
glected in the following. Clearly, our KF-based predictor suc-
ceeds in decorrelating the state vector both temporally and
spatially. At time lag k = ±1 there are two minima that stem
from the structure of the state transition model (2).

The distance and flatness metrics introduced above are ap-
plied to the original state vector and to the innovations vector,
averaged over all boundary nodes in cluster 1. The results
are summarized in Figure 3. In particular, Si is the discrete-
time Fourier transform of a modified innovation ACF where
the amplitudes between ±0.1 are truncated. Hence the high-
frequency component in Figure 2a are removed. S0 = constant
denotes the reference PSD of a perfect white signal while Sp is
the PSD of the actual state vector.

Furthermore, the improvement achieved by our approach
strongly impacts the error resulting from the subsequent quan-
tization. Consider an 8-bit quantizer whose dynamic range
is matched to minimum and maximum of the corresponding
signals. In the example considered, the quantization mean
square error (MSE) incurred with the innovations approach is
−100dB. In comparison, the MSE resulting from quantization
of the original state equals −13.5dB.

5. CONCLUSIONS

Exploiting the spatio-temporal field dependencies of the field
reduces the communication overhead in a clustered sensor net-
work. The differential field state vector encoding builds on a
Kalman prediction step governing the field’s spatio-temporal
evolution. Only the innovations/prediction error vector needs
to be exchanged among clusters. The resulting decentralized se-
quential algorithm uses the empirical covariances and Kalman
gain matrix Kk which are pre-computed and stored in a look-
up table. As verified for the example of an acoustic field, our
method succeeds in decorrelating the relevant state subvector.
The approach reduces transmit power and quantization errors
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Fig. 2. Empirical autocorrelation functions (ACF) normalized to unit power. The temporal ACF (a) is averaged over nodes ∂L(1).
The spatial ACF (b) is a function of nodes ∂L(1) and is averaged over time.

Table 1. Settings for the simulated hallway

quantity notation value

rectangular area I × J 50× 50
Δt 371 ns
Δr 12.24 cm

rectangular area I × J 50× 50
acoustic speed c 340 m/s
source shape s0(t) ricker(t− 16.7ms)
source location (i0, j0) (25, 25)
source noise σs 0.001/(Δtc

2)
8 sensors {(i, j) : i = 1, · · · , 4; j = 1, 4}
cluster boundary betw. i = 10 and 11

rigid walls r ∈ ∂Lw ∂tp(r, t) = 0
open doors r ∈ ∂Ld

1
c
∂tp(r, t)−∇p(r, t) · n = 0

initial conditions ∂tp(r, 0) = 0, p(r, 0) = 0

1.817

S0 = const

0
.0
0
3

Si

1.8
17

Sp
P

Sp
fl = 10 −5

S0 = const

Si

fl
=

0
.9̇

d =
13.

128

Fig. 3. Length � of geodesics in a manifold P of PSDs (left) vs.
flatness (right) related to the empirical ACF over time (cf. with
Figure 2a). S0 = constant is the PSD of a perfect white signal,
Sp is the PSD of the pressure states and Si is the modified PSD
of the innovation.

in clustered sensor networks for physics-based field estimation.
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