
AN EFFICIENT ALGORITHM FOR THE SYNTHESIS OF FULLY CONSISTENT GRAPHS

Martin Kreißig and Bin Yang

Institute of Signal Processing and System Theory, University of Stuttgart
email: {martin.kreissig, bin.yang}@iss.uni-stuttgart.de

ABSTRACT

In this paper we present an efficient algorithm for the synthesis of
fully consistent graphs. A consistent graph is a graph whose cyclic
sum of edge weights along all loops is zero. It plays an important
role in many sensor array processing applications like Time Differ-
ence of Arrival (TDOA) based source localization. By applying the
concept of fundamental loops, a linearly independent basis of the
loop space of the graph, our algorithm is able to find all consistent
sets of edge weights for the full graph efficiently.

Index Terms— synthesis of consistent graphs, TDOA based lo-
calization, difference measurements, sensor fusion

1. INTRODUCTION

We consider sensor array applications where differenceswij = ui−
uj of sensor measurements ui and uj are processed. They inherit
the property that the sum of these difference measurements along
any loop is zero: wij + wjk + . . . + wli = ui − uj + uj − uk +
. . .+ul−ui = 0. This relation is known as the zero cyclic sum. We
can abstract a set of sensors to vertices of a graph and the difference
measurements to weights of edges between vertices. If such a graph
fulfills the zero cyclic sum condition, we call it a consistent graph.

The concept of consistent graphs can be seen in many applica-
tions like electrical network theory, sensor fusion and TDOA based
source localization [1]. For the latter example, this concept has been
already exploited by the DisAmbiguation of TDOA Estimation in
Multipath, Multisource environments (DATEMM) algorithm, which
synthesizes consistent graphs to reduce the complexity for realtime
speaker localization [2]. In this scenario, the difference measure-
ment is the TDOA of the speech signal between a pair of micro-
phones. The TDOAs that stem from one speaker create a consistent
graph. Hence if we find all consistent graphs, we reduce the number
of false localizations. DATEMM turned out to be an efficient algo-
rithm, but it has two disadvantages. First it starts the synthesis of
consistent graphs by triples (loops containing three edges) which do
not always exist in an incomplete graph. Secondly, it may lose so-
lutions if multiple sources exist. These restrictions make DATEMM
unfeasible for general applications.

In this paper, we present a new efficient algorithm for the synthe-
sis of fully consistent graphs. Based on the concept of fundamental
loops, the term fully consistent graphs means that all edges have to
be assigned a consistent edge weight. In real applications one also
has to consider partial consistency, where only subgraphs are con-
sistent. Fig. 1 shows a graph with 5 vertices vi and 7 edges with the
corresponding edge weights wi. It is easy to verify that the subgraph
consisting of the four vertices v1, v2, v3, v4 is consistent because the
cyclic sum of edge weights wi along all loops in the subgraph (e.g.

l1 and l2) is zero. The full graph consisting of all vertices and edges
is, however, not consistent because the cyclic sum of edge weights
along loop l3 is not zero. Hence the graph in Fig. 1 is only partially
consistent. The synthesis of partially consistent graphs is a much
more challenging problem and will be addressed in future.

v1

v2

v3

v4

v5
w1 w2

w3

w5

w6

w4

w7
l1

l2 l3

w1 = 1
w2 = −1
w3 = 2
w4 = 3
w5 = −2
w6 = 3
w7 = 1

Fig. 1. A graph which is only partially consistent (without v5).

In the next section we introduce the concept of consistent graphs.
In Sec. 3, we present our efficient algorithm to obtain them and dis-
cuss its complexity. In Sec. 4, we introduce the notation of approx-
imate consistency. In Sec. 5, we evaluate the theoretical discussion
on the complexity given some generated data.

Throughout this paper, we use the following notations: Matri-
ces are bold, vectors underlined and unordered sets are indicated by
blackboard bold.

2. CONSISTENT GRAPH

For the subsequent synthesis we denote a graph by G(V,E) defined
by its vertex setV = {v1, . . . , vM}which represents the sensors and
the edge set E = {e1, . . . , eN} that indicates whether a value has

been measured between a pair of sensors. Wn =
{
w

(n)
1 , . . . , w

(n)
Kn

}

is the weight set for the edge en containing different measurements.
These weight sets span the complete search spaceW = W1 × · · · ×
WN from which we aim to find all consistent assignments w =
[w1, . . . , wN]T ∈ W.

The graph is complete if for each pair of vertices there exists an
edge in E. It is connected if there exists at least a path between all
pairs of vertices. A spanning tree is a subgraph of G that reaches all
vertices without closing any loop. The edge set of a spanning tree is
denoted by Ts. For any spanning tree, we obtain one fundamental
loop (FL) by adding an edge from the complementary tree Tc =
E \ Ts to it. Each FL can be represented by an N × 1 vector li
containing 0 if the specific edge is not included in the loop, 1 if
the edge and loop point to the same direction and −1 otherwise.
There are N − M + 1 FLs that are represented by the FL matrix
Bf = [li] [1]. For the graph of Fig. 1, one possible spanning tree
is given by the thick edges, thus leading to the complementary tree

2653978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Tc = {e5, e6, e7} and to the following FL matrix

Bf =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

loops → l1 l2 l3
edges ↓

e1 1 0 0
e2 −1 1 −1
e3 0 −1 1
e4 0 0 −1
e5 1 0 0
e6 0 1 0
e7 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

From [3] we know that for a given graph G, Bf represents a
linearly independent basis of all loops. This enables us to check the
cyclic sum condition by

B
T
f w = 0. (2)

3. AN EFFICIENT SYNTHESIS ALGORITHM

Our algorithm to obtain all consistent solutions for the full graph
G(V,E) with weight set W performs such that we first determine
a spanning tree Ts. This can be done either by Depth-First Search
(DFS) or Breadth-First Search (BFS). We obtain the FLs by adding
the edges from the complementary tree to the spanning tree.

Then we compute the consistent solutions for each FL sepa-
rately. A FL can contain three or more edges depending on the given
graph and the choice of the spanning tree. Finally we merge these
consistent FLs together to fully consistent graphs in the sense of (2).
In the following, we discuss the details of the algorithm.

3.1. Spanning tree

In the graph theory, there exist several algorithms to obtain a span-
ning tree in a connected graph. The most familiar ones are BFS and
DFS [4]. Both algorithms need an initial vertex to start their search.

BFS searches all neighbours of the current vertex and marks
them as visited if this has not been done previously. Next, one of
the newly marked neighbours is defined as the new reference vertex
and its neighbours are explored. If there is no new vertex to be vis-
ited, BFS steps back to the previous reference vertex and looks for
the next neighbour which has not been explored yet and marks it as
a reference one. This leads to a rather wide spanning tree, which has
small distances from the initial vertex to all others.

In comparison, DFS leads to a rather narrow and deep spanning
tree. DFS searches for a neighbour of the inital vertex, marks it as
visited and defines it directly as the new reference vertex. Then it
explores the neighbours of the new reference vertex. If there is an
unvisited one, it is defined as the new reference. Otherwise, DFS
steps back to the previous reference vertex and explores its next un-
visited neighbour.

BFS and DFS are known to find their solution in O (M +N)
steps. The worst case is when they have to explore each vertex and
each edge once.

For our purpose it is better to apply the BFS algorithm as it pro-
duces shorter FLs. For the same reason, it is recommended to choose
the initial vertex of the spanning tree algorithm as the one with most
neighbours.

3.2. Fundamental loops

As stated previously, we determine FLs by adding edges of the com-
plementary tree Tc to the spanning tree Ts. The loops are closed
by an algorithm that searches through all edges of the spanning
tree. Thus the complexity for determining the FL matrix Bf can be
bounded by O ((N −M)M).

3.3. Consistent fundamental loops

Now we search all consistent weight assignments for each FL. This
is done by a simple brute-force search of all weight combinations for
each FL. The consistent solutions for each FL are saved.

The number of edges per FL is between 3 and M . If a graph is
complete and we use a BFS spanning tree, all FLs will have only 3
edges. In the worst case, one FL can contain at maximum M edges
(allM−1 edges from Ts and one edge from Tc) if we choose a DFS
spanning tree. Hence the complexity for determining all consistent
solutions of all FLs is between (N−M)K3 and (N−M)KM if all
edge weight sets Wn have the same cardinality Kn = |Wn| = K.
We see here that a BFS tree is clearly better than a DFS one. Below
we assume that after this step, the i-th FL has finally K̄i (≤ K)
consistent solutions.

3.4. Loop merging

Starting with the sets of consistent solutions for allN −M +1 FLs,
we now merge them to fully consistent graphs. The idea is straight-
forward. We start with all K̄1 consistent solutions of the 1st FL and
merge all K̄2 consistent solutions of the 2nd FL to them. So we
have to check K̄1 · K̄2 combinations. One combination is valid if
there is no conflict between the consistent solutions of both FLs. A
conflict arises if both FLs share one or several common edges and
the weights of these edges are different in both FLs. The merging
is successful if a) the weights of the common edges are identical in
both FLs or b) both FLs have no common edges. As a result, we ob-
tain K̄1K̄2 or less consistent subgraphs containing both FLs. In that
way, we merge iteratively the consistent solutions of the remaining
FLs to them. This is illustrated in Fig. 2 where the graph shown in
a) has three FLs denoted as l1, l2, l3. Each of them is assumed to
have two consistent solutions. These consistent FLs shown in b) are
denoted by lo,p where o indicates the loop number and p the index
of its consistent solution. In c) we present the loop merging process
where × denotes a conflict in the edge weights of common edges,
which is the case e.g. for l1,1 and l2,1 on edge (v1, v2). The solid
arrows indicate a valid merging and the dashed arrows show skipped
combinations.

It is clear that only these pairs of consistent FLs lead to a re-
duction in the combinations if they have common edges. Thus it is
recommended to sort the FLs in such a way that FLs having a large
number of common edges are merged first.

The complexity of the loop merging step depends on the number
of consistent solutions. If we assume K̄i = K̄, we obtain at most
K̄N−M+1 different combinations in the tree of Fig. 2. It is easy
to see that this is a very pessimistic bound, because a lot of combi-
nations will be discarded at early stages due to conflict. In the best
case, if the merging of two FLs always returns K̄ consistent solu-
tions out of K̄2 combinations, the overall complexity of the merging
step has the order O

(
(N −M)K̄2

)
.

2654

a)
v1

v2

v3

v4

b)
l1 l2 l3

3

1

−2

l1,1

−1

1

2

l1,2

−1 4

5

l2,1

3 4

1

l2,2

1

4

3

l3,1

−3

1

4

l3,2

c)
l1

l1+l2

l1+l2+l3

• •l1,1 l1,2

• • • •l2,1 l2,1l2,2 l2,2× ×

• • • • • • • •
l3,1 l3,1 l3,1 l3,1l3,2 l3,2 l3,2 l3,2

× ×

Fig. 2. Illustration of loop merging for three fundamental loops with
each two consistent solutions.

3.5. Complexity

The different steps of our synthesis algorithm require a computa-
tional complexity of O (M +N) for the spanning tree, O((N −
M)M) for obtaining the fundamental loops, O

(
(N −M)K3

)
−

O
(
(N −M)KM

)
for finding consistent fundamental loops and

O
(
(N −M)K̄2

)
− O

(
K̄N−M+1

)
for loop merging. Hence

the complexity C can be upper bounded by O((N − M)KM +
K̄N−M+1) in the worst case and lower bounded by O((N −
M)K3 + (N −M)K̄2) ≈ O

(
(N −M)K3

)
if all FLs are triples.

This shows a significant improvement since the brute-force ap-
proach would check all KN combinations of the edge weights with
typically K � K̄.

3.6. Comparison to previous algorithms

This algorithm differs to DATEMM due to its clear structure and its
flexibility in terms of FLs. In DATEMM consistent triples (loops of
three edges and vertices) are synthesized and merged if two triples
have the same weight on a common edge. This combined subgraph
is appended by another triple if there are common edge weights and
so on until the maximal connected graph is synthesized. Therefore
the set of consistent triples must be scanned several times. This im-
plies high cost in complexity. The new algorithm compares all pairs
of consistent loops only once and is hence simpler. Moreover it is
always possible to find a set of FLs in any connected graph. In con-
trast, DATEMM requires triples which may not exist in a connected
graph while DATEMM does not.

In [5] we already presented a similar synthesis algorithm which
is based on a Back-Tracking (BT) search on the FLs. The main dis-
advantage of BT is that only full consistent solutions are accepted,
i.e. a consistent weight assignment to all edges. Instead our new al-
gorithm is able to return consistent partial solutions provided by the
consistent FLs and combinations of them. Note that there are partial

consistent solutions that are not covered by the FLs. Additionally, in
[5] a consistent assignment like l2,2 in Fig. 2 is computed at run time
after l1,1. When the same assignment is reached in another branch
like l1,2 in our example it is recalculated. In the new algorithm we
compute the consistent assignments only once and that leads to a
lower complexity.

4. APPROXIMATELY CONSISTENT GRAPHS

So far we considered the ideal case of perfect zero cyclic sum. In
real applications, the edge weightswn like TDOAmeasurements are
never precise due to noise, measurement error and time discretiza-
tion. Hence, the cyclic sum of even matching edge weights is nor-
mally small, but not exactly zero. This is called an approximately
consistent graph. In this case, we have to replace the exact consis-
tency condition (2) by a relaxed one. This can be done individually
for all FLs li

|lTi w| ≤ δ ∀i (3)

or for all FLs together

||BT
f w||p ≤ Δ (4)

where || · ||p is a suitable p-norm. The three p-norms p = 1 (the sum
of magnitude of all elements of BT

f w), p = 2 (the euclidean norm
of BT

f w), and p = ∞ (the maximum magnitude of all elements of
B

T
f w) are worth to be studied. The threshold value δ or Δ have

to be adjusted according to the variance of the edge weights wn. In
addition, δ andΔ can also be chosen according to the length (number
of edges) of the FLs for uncorrelated edge weight errors with equal
variance.

5. SIMULATIONS

We implemented our algorithm in C++. To perform a feasible ver-
ification of the computational complexity in Sec. 3, we choose a
complete graph with M = 5 vertices, N = 10 edges and generate
K̄ different fully consistent weight vectors wk satisfying (2). In the
first experiment, no additional erroneous edge weights are generated
and hence the total number of weights per edge isK = K̄. We apply
the brute force approach and the new synthesis algorithm with either
a DFS or a BFS spanning tree to find all K̄ fully consistent graphs.
This experiment is repeated 50 times and the average run time in sec-
onds is plotted in Fig. 3 overK = K̄. We see a significant reduction
in run time of our algorithms compared to the brute force approach.
The improvement is even bigger when we use a BFS spanning tree
due to shorter FLs. The solid line in Fig. 3 shows a scaled version of
the computational complexity (N −M)K3. We see that it matches
the run time of our algorithm very well. Similar results were also
obtained when running the simulations on graphs with more vertices
and complete as well as non-complete but connected graphs.

In the second experiment, we checked the impact of wrong mea-
surements on the run time. We generated K = 10 weights per edge
where K̄ = 1, . . . , 5 weights are consistent andK − K̄ weights are
randomly chosen and thus wrong. In Fig. 4 we present the run time
of our synthesis algorithm based on either a BFS or a DFS spanning
tree. We see that the run time is constant and does not depend on K̄.
This verifies the dependence of the complexity on K rather than K̄

as predicted in Sec. 3.5.

2655

5 6 7 8 9 10

10
−2

10
0

10
2

10
4

10
6

R
un

tim
e
[s
ec
]

Number of edge weightsK

brute-force synthesis

synthesis with DFS tree
synthesis with BFS tree

(N −M)K3 · α

Fig. 3. Comparison of the run time of the brute force and the new
synthesis algorithms with either a BFS or DFS spanning tree for a
complete graph of M = 5 vertices. α = 5 · 10−6 is a scaling factor
between the computational complexity in terms of the number of
operations and the run time in seconds.

1 2 3 4 5
0

0.1

0.2

0.3

0.4

R
un

tim
e
[s
ec
]

Number of consistent edge weights K̄

BFS
DFS

Fig. 4. Run time of our synthesis algorithm with either a BFS and
DFS spanning tree over K̄ consistent out of K = 10 edge weights
(M = 5, N = 10).

In the final simulation, we consider the effect of errors in the
edge weights on the synthesis of approximately consistent graphs.
For simplicity, we model the edge weight errors as an additive white
Gaussian noise with the variances σ2 = [0.2, 0.4, 0.6]. The edge
weights w(n)

k are randomly chosen in the interval [−500; 500] and
we generated a complete graph ofM = 5 and N = 10.

We generated K̄ = 10 consistent solutions for each (σ2, δ) pair,
where δ is given in (3). In Fig. 5, we plot the number of originally
generated consistent solutions that our synthesis algorithm has found
(true positive) over the number of new consistent solutions (true neg-
ative). The additional graphs occur due to the relaxation of the cyclic
sum condition in (3). The threshold δ for checking approximate con-
sistency is chosen to be [0.75, 1.0, 1.25, 1.5, 1.75] where smaller δ
values correspond to the lower points in Fig. 5 and larger δ values to
upper points.

As expected we observe a strong increase of the number of ad-
ditional solutions for large δ. We also see that it is impossible to

obtain all desired solutions without synthesizing new ones. This ef-
fect is well known from the detection theory that the false alarm
probability increases with the detection probability.

0 2 4 6 8 10
0

1

2

3

4

5

6

σ

2=0.6

σ
2=0.4

σ
2=0.2

N
um

be
r
of

ad
di
tio

na
lc
on
si
st
en
tg

ra
ph
s

Number of generated consistent graphs found

Fig. 5. The number of consistent graphs found in a complete graph
with M = 5 vertices and given K̄ = 10 consistent graphs, for each
setup (σ2, δ). The lowest points are related to δ = 0.75 and the
highest ones of each line to δ = 1.75 (with a step size of 0.25).

6. CONCLUSION

The synthesis of consistent graphs can be applied to many sensor fu-
sion applications to reduce their complexity. Here we have presented
a new efficient algorithm that first finds consistent fundamental loops
and then merges them to fully consistent graphs.

Two open questions remain to be solved. First, if a given graph
is not connected, there is no spanning tree and our algorithm can not
be applied. In this case, we need some preprocessing to decompose a
disconnected graph into connected components before applying our
synthesis algorithm to each component. Second, there is no efficient
synthesis algorithm yet for partially consistent graphs.

REFERENCES

[1] Bin Yang and Martin Kreißig, “An introduction to consistent
graphs and their signal processing applications,” in Proc. IEEE
ICASSP, 2011, pp. 2740 –2743.

[2] Jan Scheuing and Bin Yang, “Disambiguation of TDOA esti-
mation for multiple sources in reverberant environments,” IEEE
Trans. on ASLP, vol. 16, no. 8, pp. 1479–1489, Nov. 2008.

[3] N. Balabanian and T. A. Bickart, Electrical Network Theory,
John Wiley & Sons, 1969.

[4] Stuart Russell and Peter Norvig, Artificial Intelligence: A Mod-
ern Approach, Pearson Education, 2 edition, 2003.

[5] Martin Kreißig and Bin Yang, “Efficient synthesis of consistent
graphs,” in Proc. EUSIPCO, 2010, pp. 1364–1368.

2656

