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ABSTRACT

We consider the problem of unknown maneuvering emitter tracking
by a wireless sensor network using the interacting multiple mod-
els (IMM) with the TDOA and FDOA measurements. Essential to
this tracking framework is the Markov transition probability matrix
(TPM) governing the jumps between multiple dynamic motion mod-
els for the maneuvering target. In practice, the TPM is unknown
and has to be estimated. In this paper, we consider the maximum
likelihood (ML) estimation of the TPM and propose a recursive al-
gorithm to update the ML TPM estimate using the analytical center
cutting plane method (ACCPM). Compared to the general batch ML
method, the resulting recursive ML estimation method has a much
lower per sample complexity. Simulation results show the efficacy
of the proposed method with improved tracking performance.

Index Terms— Maneuvering emitter tracking, ML estimation,
EKF-IMM, Markovian jump system, Convex optimization

1. INTRODUCTION

Detection, localization, and tracking (DLT) of an unknown emitter
is an important surveillance task with many civilian and military ap-
plications. In a wireless sensor network (WSN) with synchronized
sensor nodes, the DLT can be performed by either the time differ-
ence of arrival (TDOA) or frequency difference of arrival (FDOA)
information [1, 2] or both. In this paper, we focus on unknown ma-
neuvering emitter tracking using TDOA and FDOA measurements.

Maneuvering target tracking can be performed by the interacting
multiple model (IMM) algorithm [3] whereby multiple models rep-
resenting the target motion equations transit from one to another ac-
cording to a Markov chain with known transition probabilities. How-
ever, these transition probabilities (or transition probability matrix,
TPM in short) are not known in practice and has to be estimated.

In this paper, we consider the problem of maximum likelihood
estimation of the TPM and formulate it as a convex optimization
problem. Since the ML estimate of TPM corresponds to the an-
alytic center of a polytope defined by the measurements, we pro-
pose to use the analytical center cutting plane method (ACCPM) [4]
to recursively update the ML TPM estimate. In this way, the ML
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TPM estimation can be performed with substantially lower per sam-
ple complexity than the batch method, which is very important in
practice.

To confirm the effectiveness and the efficiency of the proposed
estimation method, we simulate the use of joint TDOA and FDOA
measurements to track an unknown maneuvering emitter by per-
forming the extended Kalman filter with interacting multiple models
(EKF-IMM). Simulation results show that the ACCPM [4] is an ef-
ficient recursive TPM estimation method which, together with EKF-
IMM, can yield a good overall tracking performance.

2. PROBLEM FORMULATION

2.1. Likelihood function of multiple model transition probabil-
ity

Consider the discrete Markovian jump system (MJS):

x(k) = F
[
m(k), x(k − 1)

]
+ w

[
k, m(k)

]
,

z(k) = H
[
m(k), x(k)

]
+ v

[
k, m(k)

]
, (1)

where x(k) is the continuous base state vector, z(k) is the measure-
ment vector, w(k) and v(k) are the state process noise and mea-
surement noise, respectively, F is the base state transition function,
H is the observation function, and m(k) is the modal state with

m(k) ∈ M � {1, 2, · · · , r}. We here consider m(k) as a Markov
chain with initial and transition probabilities denoted by

μj(0) = P (mj(0)), (2)

πij = P (mj(k)|mi(k − 1)), i, j = 1, · · · , r, (3)

where mi(k) stands for the event
{
m(k) = i

}
for simplicity. For

convenience, we define zk �
{
z(1), · · · , z(k)

}
.

Define the multiple model transition probability matrix (TPM):

P �
{
πij , i, j = 1, . . . , r

}
. (4)

Similar to [3], we assume that P is an unknown random but time-
invariant matrix.

By using the total probability law, the likelihood function with
respect to a deterministic P can be represented by
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p
{
z(k)|P, zk−1} =

r∑
j=1

p
{
z(k), mj(k)|P, zk−1}

=

r∑
j=1

p
{
z(k)|mj(k),P, zk−1}P

{
mj(k)|P, zk−1}

=

r∑
j=1

p
{
z(k)|mj(k),P, zk−1}

×
r∑

i=1

P{mj(k)|mi(k − 1),P, zk−1}

× P{mi(k − 1)|P, zk−1}

=

r∑
j=1

Λj(k)

r∑
i=1

πijμi(k − 1)

=μT (k − 1)PΛ(k), (5)

where

μi(k) = P
{
mi(k)|P, zk}

Λj(k) = p
{
z(k)|mj(k),P, zk−1},

μ(k) =
[
μ1(k), · · · , μr(k)

]T
,

Λ(k) =
[
Λ1(k), · · · , Λr(k)

]T
, (6)

μ(k) denotes mode probabilities, and Λ(k) denotes the mode likeli-
hoods. Since the likelihood function with multiple measurements is
denoted by

p
{
zk|P}

= p
{
z(k)|P, zk−1}p

{
zk−1|P}

, (7)

it is obvious to see that

p
{
zK |P}

=

K∏
k=1

μT (k − 1)PΛ(k). (8)

2.2. Maneuvering emitter tracking by the extended Kalman fil-
ter and the interacting multiple model method

Since the TDOA and FDOA measurement models are nonlinear with
respect to the location and velocity of the unknown maneuvering
emitter, the system model (1) can be represented by

e(k) = Fj(k − 1)e(k − 1) + w(k − 1), (9)

z(k) =

[
zt(k)
zf (k)

]
=

[
ht(e(k); s̃(l), s̃(u)) + vt(k)

hf (e(k); s̃(l), s̃(u)) + vf (k)

]
, (10)

where e(k) = [x(k), y(k), z(k), ẋ(k), ẏ(k), ż(k)]T denotes the
base state at time k corresponding to the location and velocity of
the moving emitter, j denotes the modal state at time k, s̃(l) denotes
the location of the l-th sensor, ht(k) and hf (k) denotes the noise-
free TDOA and FDOA measurements at time k, respectively, and
w(k), vt(k) and vf (k) are assumed to be Gaussian distributed and
uncorrelated with each other.

we here use the extended Kalman filter with the interacting mul-
tiple model (EKF-IMM) method to estimate the TPM P.

2.2.1. EKF based on TDOA measurements

We first consider the tracking by the EKF based on TDOA measure-
ments, which includes two steps, i.e., the prediction step and the
updating step:

Prediction step:
êt

j(k|k − 1) = Fj(k − 1)êj(k − 1|k − 1),

Pt
j(k|k − 1) = Fj(k − 1)Pj(k − 1|k − 1)FT

j (k − 1) + Rw.
(11)

Updating step:
êt

j(k|k) = êt
j(k|k − 1) + Kt

j(k)rt
j(k),

Pt
j(k|k) = (I − Kt

j(k)Ht
j(k))Pt

j(k|k − 1), (12)

where

rt
j(k) = zt(k) − hj(ê

t
j(k|k − 1)),

St
j(k) = Ht

j(k)Pt
j(k|k − 1)HtT

j (k) + Rt
v,

Kt
j(k) = Pt

j(k|k − 1)HtT
j (k)St

j(k)−1,

ht(e(k); s̃(l), s̃(u)) =
1

c

⎡
⎢⎣
||r(2)(k)|| − ||r(1)(k)||

...

||r(N)(k)|| − ||r(1)(k)||

⎤
⎥⎦ ,

r(l)(k) = G1e(k) − s̃(l), l = 1, · · · , N,

Ht
j(k) =

∂htT

∂e(k)
=

1

c

⎡
⎢⎢⎣

(̃i
(2)
j (k) − ĩ

(1)
j (k))T

...

(̃i
(N)
j (k) − ĩ

(1)
j (k))T

⎤
⎥⎥⎦ G1,

ĩ
(l)
j (k) =

r̃
(l)
j (k)

||r̃(l)
j (k)||

,

r̃
(l)
j (k) = G1ê

t
j(k|k − 1) − s̃(l),

G1 =

⎡
⎣1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎦ ,

where the superscript ”l” denotes sensor number and N denotes the
number of sensors.

2.2.2. EKF based on FDOA measurements

Since both the TDOA and FDOA observation model share the same
state transition equation, the prediction step for the FDOA case can
be omitted. We here give the updating step for the FDOA EKF track-
ing case:

êf
j (k|k) = êt

j(k|k) + Kf
j (k)rf

j (k),

Pf
j (k|k) = (I − Kf

j (k)Hf
j (k))Pt

j(k|k), (13)

where the FDOA Kalman gain is given by

rf
j (k) = zf (k) − hf

j (êt
j(k|k)),

Kf
j (k) = Pt

j(k|k)HfT
j (k)Sf

j (k)−1,

Sf
j (k) = Hf

j (k)Pt
j(k|k)HfT

j (k) + Rf
v,

hf (e(k); s̃(l), s̃(u)) =
f0

c

⎡
⎢⎢⎣

(i
(2)
j (k) − i

(1)
j (k))T

...

(i
(N)
j (k) − i

(1)
j (k))T

⎤
⎥⎥⎦ G2e(k),

Hf
j (k) =

∂hfT

∂e(k)
= −f0

c

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
Â

(1)
j (k) − Â

(2)
j (k)

î
(1)
j (k) − î

(2)
j (k)

]T

...[
Â

(1)
j (k) − Â

(N)
j (k)

î
(1)
j (k) − î

(N)
j (k)

]T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

2650



î
(l)
j (k) =

r̂
(l)
j (k)

||r̂(l)
j (k)||

,

r̂
(l)
j (k) = G1ê

t
j(k|k) − s̃(l),

Â
(l)
j (k) = (I − î

(l)
j (k)̂i

(l)T
j (k))

G2e
t
j(k|k)

||r̂(l)
j (k)||

,

G2 =

⎡
⎣0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ ,

and f0 denotes the carrier frequency.

2.2.3. μj(k) and Λj(k) of IMM

In the tracking process of EKF-IMM, model likelihood function
Λj(k) is obtained by

Λj(k) = N (rj(k); 0; Sj(k)), (14)

where rj(k) =
[
rtT

j (k) rfT
j (k)

]T

, Sj(k) =

[
St

j(k) 0

0 Sf
j (k)

]
.

The mode probability μj(k) is given by

μj(k) =
1

c(k)
Λj(k)

r∑
i=1

πijμi(k − 1), (15)

where c(k) =
r∑

j=1

Λj(k)
r∑

i=1

πijμi(k − 1).

3. ML ESTIMATION OF THE TPM USING THE
ANALYTIC CENTER CUTTING-PLANE METHOD

The analytic center of a set of convex inequalities and linear equali-
ties,

fi(x) ≤ 0, i = 1, · · · , n, Fx = c, (16)

is defined as an optimal point for the (convex) problem

min −
n∑

i=1

log(−fi(x)),

s. t. Fx = c.

(17)

with variables x ∈ Rm and implicit constraints fi(x) < 0, i =
1, · · · , n [5].

Fortunately, the maximum likelihood (ML) estimation of P by
maximizing the likelihood function p

{
zK |P}

of (8) can be per-
formed by solving the following analytical center problem:

min
P

−
K∑

k=1

log μ′(k − 1)PΛ(k),

s. t.

r∑
j=1

πij = 1,

πij ≥ 0, i = 1, · · · , r.

(18)

For simplicity and without loss of generality, we consider r = 3
in the following. Let x = [π11, π12, π21, π22, π31, π32]

T , (18) can
be equivalently written as

min
x

−
K∑

k=1

log(ck + aT
k x) − ε1

3∑
i=1

log(−bT
i x + di)

−ε2

6∑
j=1

log (xj),

(19)

where ε1 and ε2 denote constants for penalization and are usually
small,

ck =

3∑
i=1

μi(k − 1)ΛT (k)h1,

aT
k =

3∑
i=1

μi(k − 1)ΛT (k)Hi,

b1 =
[
1 1 0 0 0 0

]T
,

b2 =
[
0 0 1 1 0 0

]T
,

b3 =
[
0 0 0 0 1 1

]T
,

d1 = d2 = d3 = 1,

h1 =
[
0 0 1

]T
,

H1 =

⎡
⎣ 1 0 0 0 0 0

0 1 0 0 0 0
−1 −1 0 0 0 0

⎤
⎦ ,

H2 =

⎡
⎣0 0 1 0 0 0

0 0 0 1 0 0
0 0 −1 −1 0 0

⎤
⎦ ,

H3 =

⎡
⎣0 0 0 0 1 0

0 0 0 0 0 1
0 0 0 0 −1 −1

⎤
⎦ .

The optimization problem (19) can be solved using the iterative
procedure of the weighted ACCPM [4]:

Step 1: Let A0 = {B − eye(r × (r − 1))} with B =
[b1 · · · br], x0 be a point that satisfies the constraints,
w0 = ones(r2, 1)/ε, ε = ε1 = ε2 = 10−3, c0 =
[ones(r, 1) zeros(r(r − 1), 1)], where ones, eye, and ze-
ros are Matlab notations. s0 = c0 − (A0)T x, H0 =

A0diag{w0}diag {s0}−2A0T
, g0 = −A0diag{s0}−1w0,

K and k = 1 (diag is also a Matlab notation).

Step 2: Compute the approximate analytic center xk of the set
Ωk =

{
x ∈ R

m : ck − (Ak)T x ≥ 0
}

by the updating

scheme from the previous set Ωk−1; assume that β = 10−5

and compute (xk, sk) with xk approximate analytic center
of Ωk =

{
x ∈ R

m : c − (Ak)T x ≥ 0
}

using the updating

scheme; generate a hyperplane
{
aT

k+1x ≤ aT
k+1x

k
}

and a

new set Ωk+1 =
{
x ∈ R

m : ck+1 − (Ak+1)T x ≥ 0
}

,

where Ak+1 = (Ak, ak+1), ck+1 =

(
ck

aT
k+1x

k

)
; apply

variable stepsize dual Newton iteration method to recent un-
til a new approximate analytic center xk+1 is obtained with

δ(x) =
√

g′H−1g < 0.06.

Step 3: Set k := k + 1, if k > K, stop; otherwise, return to Step 2.

With the above iterative procedure, the unknown maneuvering
emitter tracking can be performed by the ACCPM, whose steps are
listed in table 1.

Complexity analysis of the method: The complexity of the AC-

CPM is O∗(m2

ε2
) [4], where O∗ denotes that lower order terms are

ignored; ε denotes the radius of the ball which is contained in the
solution set; m denotes the dimension of the optimization variables.
The computational complexity of the EKF is O(b3), where b is the
size of the state vector. Assuming that M is the number of states
in the state space, the computational complexity of the IMM theo-
retically includes M times the one of the EKF, M times the one of
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Table 1. Steps for tracking by the ACCPM

Step 1: Compute the mixing probability.
Step 2: Compute the means and covariances of the base
states.
Step 3: Compute the outputs of the extended Kalman filter
which include mode likelihood functions, means and co-
variances of the base states.
Step 4: Solve the optimization problem (19) by ACCPM.
Step 5: Update mode probabilities.

the states estimation at the interacting stage, and M times the one of
the states estimation at the mode probability updating stage. In these
stages, Mb(b+2) multiplications and (2M − 1)(b+3)/2 sums are
required for each mixing, respectively, and M(b+2) multiplications
and M(2b − 2) sums are required for each mode probabilities up-
dating, respectively. These yield the IMM computational complexity
approximately denoted by O∗(Mb3). Assume that K is the required
number of the cycles for accurate TPM estimation, the total compu-

tational complexity of the proposed method is O∗(KMb3 + m2

ε2
).

4. COMPUTER SIMULATION

In the simulation, the unknown maneuvering emitter is considered
to move according to one of the 3 dynamic models: (1) constant
velocity (CV) motion model; (2) clockwise coordinated turn (CT)
model; (3) anticlockwise CT model. Five static sensors are used to
estimate the TPM. The MJS used in the simulation is denoted by (9)
and (10). The state transition matrix [6] for CV, clockwise CT, and
anticlockwise CT models are respectively denoted by

F1(k) =

[
1 T
0 1

]
⊗ I2, (20)

Fj(k) =

⎡
⎢⎢⎢⎣

1 0
sin(Ωj(k)T )

Ωj(k)
− (1−cos(Ωj(k)T ))

Ωj(k)

0 1
(1−cos(Ωj(k)T ))

Ωj(k)

sin(Ωj(k)T )

Ωj(k)

0 0 cos(Ωj(k)T ) − sin(Ωj(k)T )
0 0 sin(Ωj(k)T ) cos(Ωj(k)T )

⎤
⎥⎥⎥⎦ , (21)

where j = 2, 3, ⊗ denotes the Kronecker product, I2 is the 2 × 2
identity matrix, Ωj(k) = (−1)j am√

ẋ2
k
+ẏ2

k

, j = 2, 3, and am(> 0)

denotes a typical acceleration rate. Assume that TDOA and FDOA
measurement noises respectively follows vt(k) ∼ N (0, Qt) and
vf (k) ∼ N (0, Qf ), where Qt = σ2

t Q/2 and Qf = σ2
fQ/2,

Q =
[
eye(4, 4) + ones(4, 4)

]
. The process noises w(k) follows

N (0,Ri), i = 2, 3, where Ri = diag{σ2
xi

, σ2
yi

, σ2
ẋi

, σ2
ẏi
}.

We set T = 1s, σ2
x1 = σ2

y1 = 100m, σ2
ẋ1 = σ2

ẏ1 = 10m/s,

σ2
xj

= σ2
yj

= 100m and σ2
ẋj

= σ2
ẏj

= 20m/s, j = 2, 3.

am = 100km/h2. The true initial emitter state is assumed as
e(0) =

[
0 0 40 40

]
. The a priori mode probability is as-

sumed as μ0,1 = 0.8, μ0,2 = 0.1 and μ0,3 = 0.1. We also assume
that TPM P is given by

P =

⎡
⎣0.9 0.05 0.05

0.1 0.8 0.1
0.1 0.1 0.8

⎤
⎦ . (22)

The initial value of the TPM is set by 1
3

[
1 1 1

]T
, where all the

entries of 1 are 1. We estimate the TPM P using the ACCPM. The
simulation is implemented using Matlab 7.10.0 (R2010a) on an HP
Z800 workstation with 3.47GHz and 3.46GHz Intel (R) Xeon (R)

dual core CPU. 500 Monte Carlo (MC) runs are performed. To com-
pare the performance of TPM estimation, we also perform 500 MC
runs for the numerical-integration (NI) method [3], where the decou-
pled version of the method is used and the number of grid TPMs is
set as 200. The computation time for the NI method is 932.67sec-
onds under 500MC runs.

In Fig. 1, we plot the root mean square error (RMSE) of the
TPM estimate versus the length of the measurements for both the
NI [3] and ACCPM, where the ACCPM performed with three dif-
ferent minimum step sizes, i.e., γ = 0.05, 0.005, 0.001 yield almost
the same RMSE. It is seen that the RMSE of the TPM estimate de-
creases as the length of the measurements grows and goes below 0.1
eventually. In Table 2, we list the computation time of our proposed
method with the three step sizes, i.e., γ = 0.05, 0.005, 0.001. From
Fig.1 and Table 2, it can be seen that the ACCPM outperforms the
NI [3] with much lower complexity by choosing γ = 0.05 or 0.005.
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Table 2. Computation Time (s) of the ACCPM

ACCPM γ = 0.05 γ = 0.005 γ = 0.001
198.23 338.97 912.65
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Fig. 1. RMSE of the ML TPM estimate using the ACCPM and the
NI [we use black solid line for the NI, and for ACCPM we use red
dashed line for step size γ = 0.05, green point line for γ = 0.005,
and blue dash-dotted line for γ = 0.001]
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