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ABSTRACT

We consider a distributed sensor network in which the sin-
gle antenna sensor nodes observe a deterministic unknown
parameter and after encoding the observed signal with a phase
parameter, the sensor nodes transmit it simultaneously to a
multi-antenna fusion center (FC). The FC optimizes the phase
encoding parameter and feeds it back to the sensor nodes such
that the variance of estimation error can be minimized. We re-
lax the phase optimization problem to a semidefinite program-
ming (SDP) problem and the numerical results show that the
performance of the proposed method is close to the theoretical
bound. Also, asymptotic results show that when the number
of sensors is very large and the variance of the distance be-
tween the sensor nodes and FC is small, multiple antennas do
not provide a benefit compared with a single antenna system;
when the number of antennas M is large and the measurement
noise at the sensor nodes is small compared with the additive
noise at the FC, the estimation error variance can be reduced
by a factor of M .

Index Terms— Distributed sensor network, multi-antenna
fusion center, maximum likelihood estimation, phase-only
analog encoding, asymptotic estimation error.

1. INTRODUCTION

Sensor networks have been widely studied for detection and
estimation problems. Recently, considerable research has fo-
cused on the fusion of analog data in a distributed sensor net-
work to improve estimation performance. In [1], the authors
considered estimation problems involving single antenna sen-
sors and a single antenna fusion center (FC). The sensor nodes
use an amplify-and-forward scheme to transmit observations
to the FC over fading channels and the optimal allocation of
power to the sensors was investigated. In [2], the asymptotic
variance of the best linear unbiased estimator for a single an-
tenna distributed sensor network was derived and the effect of
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phase quantization errors was analyzed. Four different multi-
ple access schemes for a single antenna decentralized estima-
tion system with a Gaussian source were investigated in [3],
and the scaling laws for large number of sensors were derived.
A coherent multiple access channel was considered in [4] and
the optimal linear decentralized estimation scheme was inves-
tigated. It is well known that for a multiple antenna communi-
cations system, the link capacity generally increases linearly
with the minimum number of antennas at the transmitter or
receiver. It is also expected that the estimation performance
of a sensor network would also benefit from a multi-antenna
FC, although prior work on this scenario is limited. A system
with a multi-antenna FC was considered in [5], which showed
that for Rayleigh fading channels, the reduction in estimation
error variance is bounded by 2 when the number of sensors
approaches infinity.

In this paper we consider a distributed sensor network in
which several single antenna sensor nodes observe a deter-
ministic parameter corrupted by noise, and simultaneously
transmit the observed signal to a multi-antenna FC. The low-
complexity sensor nodes are assumed to transmit an analog
signal with constant power and adjustable phase. The FC de-
termines the optimal value of the phase for each sensor in
order to minimize the maximum likelihood (ML) estimation
error, and the FC feeds this information back to the sensors so
that they can encode their observed signal accordingly. The
estimation performance of the phase-optimized sensor net-
work is shown to be considerably improved compared with
sensors that use non-optimized phase.

The paper is organized as follows. Section 2 describes
the system model and Section 3 formulates the phase opti-
mization problem and proposes a numerical solution based
on semidefinite programming (SDP). Asymptotic analyses for
large number of sensors and large number of antennas are pro-
vided in Section 4. Numerical results are then presented in
Section 5 and our conclusions are summarized in Section 6.

2. SYSTEM MODEL

We assume that N single-antenna sensors in a distributed sen-
sor network independently observe a deterministic parameter
θ ∈ C. The sensor nodes encode the observed signal with a
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phase parameter ai (1 ≤ i ≤ N) and simultaneously transmit
it to the FC. Assuming the FC is configured with M antennas,
the received signal at the FC is expressed as

y = Haθ + HDv + n,

where H = [h1, . . . ,hN ] and hi ∈ CM×1 is the channel vec-
tor between the ith sensor and the FC, a = {a1, . . . , aN}T

contains the adjustable phase parameters (|ai| = 1), D =
diag{a1, . . . , aN}, v is the measurement noise at the sen-
sor nodes which is assumed to be Gaussian distributed with
covariance V = E{vvH} = diag

{
σ2

v,1, · · · , σ2
v,N

}
, n

is the additive Gaussian noise at the FC with covariance
E{nnH} = σ2

nIM and IM is an M × M identity matrix.
Assuming the FC is aware of the channel matrix H, the

noise covariance V and σ2
n, the FC calculates the ML estimate

of θ using [6]

θ̂ML =
aHHH(HVHH + σ2

nIM )−1y

aHHH(HVHH + σ2
nIM )−1Ha

.

The estimator θ̂ML is unbiased and the variance of θ̂ML is
given by

Var(θ̂ML) =
(
aHHH(HVHH + σ2

nIM )−1Ha
)−1

. (1)

The variance is lower bounded by

Var(θ̂ML)≥
1

Nλmax (HH(HVHH + σ2
nIM )−1H)

, (2)

where λmax(·) denotes the largest eigenvalue of a matrix.

3. PHASE-ONLY ANALOG ENCODING METHOD

From (1), we see that Var(θ̂ML) is inversely proportional
to a quadratic form in a, which suggests the possibility of
minimizing the variance by adjusting the phase of the sig-
nals transmitted by the sensors. The advantage of adjusting
only the phase is that such adjustments do not impact the co-
variance of the sensor noise observed at the FC, unlike what
would occur if the transmit power of the sensors was also ad-
justed. This is the reason for the assumption of sensors with
constant transmit power.

We formulate the following optimization problem at the
FC:

min
a

Var(θ̂ML) (3)

s.t. |ai| = 1, i = 1, . . . , N.

Define B = HH(HVHH +σ2
nIM )−1H, then we can rewrite

problem (3) as

max
a

aHBa (4)

s.t. |ai| = 1, i = 1, . . . , N.

If there are only two sensors in the network, a closed-
form solution to problem (4) can be obtained. Defining

B =

[
c bejβ

be−jβ c

]
with b, c > 0, then the largest eigen-

value of B is given by

λmax(B) = c + b,

and the solution to (4) is given by the corresponding eigen-
vector

a =
[
ejβ1 , ejβ2

]T
,

where β1 − β2 = β.
For the general situation where N > 2, we relax prob-

lem (4) and convert it to a standard SDP problem that can be
solved with standard tools such as cvx [7]. To begin with,
we rewrite (4) into the following equivalent form

max
A

tr(BA) (5)

s.t. Ai,i = 1, i = 1, . . . , N

rank(A) = 1

A � 0,

where Ai,i denotes (i, i)th element of A. Relaxing the rank-
one constraint on A, we can convert problem (5) to a standard
SDP problem:

max
A

tr(BA) (6)

s.t. Ai,i = 1, i = 1, . . . , N

A � 0.

Defining Br = real{B}, Bi = imag{B}, and similarly for
Ar and Ai, (6) can be converted to the equivalent real form

max
{Ar,Ai}

tr(BrAr − BiAi) (7)

s.t. Ar i,i = 1, i = 1, . . . , N[
Ar −Ai

Ai Ar

]
� 0.

Problem (7) can be efficiently solved using a standard interior
point method. Denote the solution to problem (7) as A∗. If
rank(A∗) > 1, we can use a method similar to Algorithm 2
in [8] to extract a rank-one solution. In Section 5, the numer-
ical results show that the performance of the proposed phase
encoding method is close to the theoretical lower bound in (2).

4. ASYMPTOTIC ANALYSIS

In the asymptotic analyses conducted in this section, we as-
sume a fading channel model with path-loss:

hi =
1

dα
i

h̃i,

where di denotes the distance between the ith sensor and the
FC, α is the path loss exponent and h̃i denotes the normal-
ized channel component. Furthermore, the elements of the
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normalized channel are assumed to have constant amplitude
and random phase:

h̃i = [ejγi,1 , ejγi,2 , . . . , ejγi,M ]T ,

where γi,j is assumed to be uniformly distributed over [0, 2π].

4.1. Performance Bound for Large Number of Sensors

From (2), the lower bound of Var(θ̂ML) depends on the
largest eigenvalue of HH(HVHH + σ2

nIM )−1H. To eval-
uate this eigenvalue, we approximate HVHH as a diagonal
matrix. The (m, n)th element of HVHH is given by

HVHH
m,n =

N∑
i=1

ej(γi,m−γi,n)σ2
v,i

d2α
i

.

According to the strong law of large numbers, when N → ∞,
the following equation holds

lim
N→∞

1

N

N∑
i=1

ej(γi,m−γi,n)σ2
v,i

d2α
i

(a)
= E

{
σ2

v,i

d2α
i

}
E

{
ej(γi,m−γi,n)

}

(b)
=

{
E

{
σ2

v,i

d2α
i

}
m = n

0 m �= n
(8)

where (a) follows from the assumption that γi,m, di and σ2
v,i

are independent of each other and (b) is due to the fact that
γi,m and γi,n are independent and uniformly distributed over
[0, 2π]. Thus, when N is sufficient large, we can approximate
HVHH as

HVHH ≈ NE

{
σ2

v,i

d2α
i

}
IM , (9)

where E

{
σ2

v,i

d2α
i

}
≈ 1

N

∑N

i=1

σ2

v,i

d2α
i

. Based on (9), we have

λmax

(
HH(HVHH + σ2

nIM )−1H
)

≈
1

NE

{
σ2

v,i

d2α
i

}
+ σ2

n

λmax(H
HH)

(c)
≈

NE

{
1

d2α
i

}
NE

{
σ2

v,i

d2α
i

}
+ σ2

n

, (10)

where (c) is due to λmax(H
HH) = λmax(HHH). Plugging

(10) into (2), we obtain an approximate lower bound:

Var(θ̂ML) ≥
σ2

n+
∑N

i=1

σ2

v,i

d2α
i

N
∑N

i=1
1

d2α
i

. (11)

Clearly, an upper bound on the estimate variance can be
found by considering the single-antenna case, which results
in

Var(θ̂ML) ≤
σ2

n +
∑N

i=1

σ2

v,i

d2α
i(∑N

i=1
1

dα
i

)2 . (12)

When N → ∞, the ratio of the lower to the upper bound is
given by

lim
N→∞

(∑N
i=1

1
dα

i

)2

N
∑N

i=1
1

d2α
i

=

(
E

{
1

dα
i

})2

E

{
1

d2α
i

} = 1 −
Var

{
1

dα
i

}
E

{
1

d2α
i

} . (13)

Interestingly, we see from (13) that when Var
{

1
dα

i

}



E

{
1

d2α
i

}
, the gap between the bounds is small and the avail-

ability of multiple antennas at the FC does not provide a
benefit compared with the single antenna system.

4.2. Scaling Law with Number of Antennas

Using the matrix inversion lemma, the inverse of noise co-
variance matrix can be written as

HH(HVHH + σ2
nIM )−1H

=HH

(
1

σ2
n

IM −
1

σ4
n

H

(
V−1+

1

σ2
n

HHH

)−1

HH

)
H

=
1

σ2
n

HHH−
1

σ4
n

HHH

(
V−1+

1

σ2
n

HHH

)−1

HHH. (14)

The (m, n)th element of HHH is given by

HHHm,n =
1

dα
mdα

n

M∑
i=1

ej(γn,i−γm,i).

Similar to (8), when M → ∞, the following holds:

lim
M→∞

1

M

M∑
i=1

ej(γn,i−γm,i) =

{
1 m = n

0 m �= n.
(15)

Based on (15), we can approximate HHH as

HHH ≈ Mdiag

{
1

d2α
1

, · · · ,
1

d2α
N

}
. (16)

Substituting (16) into (14), we have

HH(HVHH + σ2
nIM )−1H

≈ diag

{
M

d2α
1 σ2

n + Mσ2
v,i

, · · · ,
M

d2α
N σ2

n + Mσ2
v,N

}
.

Since HH(HVHH + σ2
nIM )−1H is thus approximately di-

agonal, for any phase vector a, we have

Var(θ̂ML) ≈
1

M
∑N

i=1
1

d2α
i

σ2
n+Mσ2

v,i

. (17)

From (17), it can be observed that when Mσ2
v,i 
 σ2

nd2
i , a

reduction in the estimate variance by a factor of M can ap-
proximately be achieved, and to realize this gain, the phase
vector a can be selected arbitrarily.
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Fig. 1. Performance of the ML estimator with increasing
number of sensors for M = 4.

5. NUMERICAL RESULTS

To evaluate the performance of the proposed approach, sev-
eral numerical experiments were carried out. In the numerical
examples, the transmit power of the sensor nodes is normal-
ized to 1 and the path loss exponent α is set to 1. Both di and
σ2

v,i are assumed to be uniformly distributed, with di ranging
from 2 to 7, σ2

v,i between 0.001 to 0.01 and the additive noise
power σ2

n is set to 0.1. In the results, each point on the curve is
obtained by averaging over 300 realizations of h̃i. To evaluate
the performance without feedback, a is set to a vector of all
ones (the random phase component is subsumed in the chan-
nel vector). The results in Fig. 1 show that the performance
of the proposed method is very close to the lower bound in
Eq. (2) and significantly better than without feedback. Fig. 2
shows that the benefit of the feedback reduces as the number
of FC antennas grows, although the gain is still significant for
reasonable values of M below 10. We see in both figures that
as either N or M get large, our asymptotic expressions match
the numerical results well.

6. CONCLUSION

In this paper, we investigated a phase-only analog encoding
scheme for a distributed sensor network composed of single-
antenna sensors and a multi-antenna FC. We relaxed the phase
optimization problem to an SDP and the numerical results
show that the performance of the proposed method is close
to the theoretical lower bound. Also, asymptotic results for
cases with large numbers of sensors or antennas were de-
rived. The asymptotic results indicate that when the number
of senors is large and the variance of the distance between the
sensor nodes and the FC is small, the availability of multiple
antennas at the FC does not provide a benefit compared with
the single antenna case. On the other hand, when the number
of antennas M is large and the measurement noise and the
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Fig. 2. Performance of the ML estimator with increasing
number of antennas for N = 4.

additive noise satisfy Mσ2
v,i 
 σ2

nd2α
i , a reduction in estima-

tion variance of M can be obtained.
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