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ABSTRACT

Existing localization approaches developed using acoustic vector
sensor (AVS) signals normally assume that the sources are static and
the number of sources is known. In this paper, a novel approach
is developed to estimate the 2-D direction of arrival (DOA) of an
unknown and time-varying number of acoustic sources using a sin-
gle AVS. A random finite set (RFS) is employed to characterize the
randomness of the state process, i.e., the dynamics of source motion
and the number of active sources. Also the measurement processes
are modeled by RFS since we allow the AVS report undesired events
by sending an empty set other than received signals under regular
cases. We further employ particle filtering to approximate the poste-
rior DOA distributions. The performance of the proposed approach
is demonstrated by simulated experiments.

Index Terms— Acoustic vector sensor, random finite set, direc-
tion of arrival, particle filtering, multiple acoustic sources.

1. INTRODUCTION

Localization and tracking the 2-D (azimuth and elevation) direction
of arrivals (DOA) of acoustic sources in a noisy environment is sig-
nificantly important in many applications such as room speech en-
hancement, underwater target surveillance, sonar and acoustic radar
signal processing. The tasks are traditionally achieved by using ar-
rays equipped with several pressure sensors, together with estima-
tion techniques based on the collected acoustic pressure measure-
ments [1]. However, such techniques usually require either an array
of sensors with a large aperture or multiple hybrid arrays. In recent
years, acoustic vector sensor (AVS) [2] that is able to measure acous-
tic pressure as well as particle velocity at sensor position has been
widely employed for acoustic source localization.

AVS was first introduced in signal processing and acoustic
source localization problems in [2], in which an intensity based algo-
rithm and a velocity covariance based algorithm are fully presented.
A maximum likelihood based DOA estimation algorithm is devel-
oped in [3]. The conventional beamforming (Bartlett beamforming)
and Capon beamforming for 2-D DOA estimation using acoustic
vector sensors are investigated in [4]. It shows that both the azimuth
and elevation can be unambiguously estimated by using an AVS
array. Further, the subspace based approaches such as MUSIC [5]
and ESPRIT [6] have been used in AVS localization problem. More
practically, AVS localization in shallow ocean and room reverberant
environments are investigated in [7] and [8]respectively.

The existing 2-D DOA estimation schemes assume that the
sources are static and the number of sources are known, and exten-
sively rely on localization approaches. These assumptions are often
violated in real applications since the sources (e.g., submarines

in underwater or speakers in the room environment) are in fact
dynamic, and the number of sources is unknown and may be time-
varying. In this paper, we consider such a scenario where the source
motion and the number of sources are unknown and time-varying.
A random finite set (RFS) framework is employed to characterize
the randomness from the source dynamics as well as the measure-
ment processes. Basically, RFS framework neglects the intrinsic
data association between sources and measurements, and has been
found promising for multi-object tracking problem [9–11]. In the
state space, each element of an RFS is a random vector which can
be employed to describe the state of source, and the cardinality of
the set is also random and can be used to model the number of
sources. The source motion is modeled by employing a constant
velocity (CV) model, and the source appearance and disappearance
are described by using birth and death processes respectively. For
the measurement, the AVS signal is received under regular cases
and an empty set is received if undesired event happens. Since the
AVS measurement function is nonlinear, a particle filtering (PF) [12]
implementation is employed to obtain the final DOA estimates. For
rigorous mathematical discipline of RFS framework and its ap-
plication in multi-object tracking problem, the reader is referred
to [9, 11]. Particularly, RFS is employed for multiple room acoustic
source tracking in [10]. Very recently, PF has been employed for
2-D DOA estimation of a single source by using a single AVS [13].

The rest of this paper is organized as follows. In Section 2, the
AVS signal model is introduced. Section 3 and 4 present the RFS
formulation for source dynamics and the measurement process re-
spectively. Simulated experiments are organized in Section 5. Con-
clusions and future work are described in Section 6.

2. SIGNAL MODEL

Assume that mt acoustic source signals impinge on an AVS at dis-
crete time t. The source signals s(t) can be written as

s(t) = [s1(t), . . . , smt(t)]
T ∈ C

mt×1, (1)

where C denotes the complex domain and superscript T is the matrix
transpose operation. Further assume that the mth source signal is
emitted at a 2-D direction θmt given by

θmt = [φmt , ψ
m
t ]T , m = 1, . . . ,mt, (2)

with φmt ∈ (−π, π] and ψmt ∈ [−π/2, π/2] denoting the azimuth
and the elevation angle respectively. AVS measures the acoustic
pressure as well as three component particle velocities. Let umt be
the unit direction vector pointing from the origin toward the source
position, and normalized by a constant term ρ0c, given as

umt = − 1

ρ0c0
[cosψmt cosφmt , cosψ

m
t sinφmt , sinψ

m
t ]T , (3)
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where ρ0 and c0 represent the ambient density and the propagation
speed of the acoustic wave in the medium respectively. The received
signal model for an AVS located at r can be written as

y(t) =

mt∑
m=1

[
1
umt

]
sm(t− τmt ) +

[
np(t)
nv(t)

]
, (4)

where np(t) ∈ C and nv(t) ∈ C
3×1 represent the corresponding

pressure and velocity noise terms separately. τmt is the time delay
of the mth wave between the sensor and the origin of the coordinate
system, i.e., τmt = −rTumt /c.

For an acoustic source that moves relatively slowly, the DOA
θmt can be assumed to be stable if a small number of snapshots are
processed at each time step. Assume thatN snapshots are taken into
account at time step k, the number of sources is thus mk and the
snapshots of the source signal can be written as

Sk = [s(kN + 1), . . . , s(kN +N)] , (5)

where S(k) ∈ C
mk×N . The noise and received data matrices can

be expressed as Nk = [n(kN + 1), . . . ,n(kN +N)] ∈ C
4×N and

Yk = [y(kN + 1), . . . ,y(kN +N)] ∈ C
4×N respectively. Ac-

cordingly, θk is used to express the DOA at time step k. Equation
(4) can thus be written as

Yk = A(θk)Sk +Nk, (6)

where A(θk) = [a(θ1
k), . . . , a(θ

mk
k )], with a(θmk ) =

[
1, (umk )T

]T
denoting the steering vector. Both the azimuth and elevation infor-
mation are thus included and 2-D DOA can be estimated.

Assume that: 1) the noise terms in (6) are independent iden-
tically distributed (i.i.d.), zero-mean complex circular Gaussian
processes and are independent from different channels; and 2) the
source signal Sk and the noise Nk are independent. The PDF of
the measurements can be addressed as Yk ∼ CN (0,Γk) where
CN (·|μ,Σ) represents a multivariate complex Gaussian distribu-
tion with mean μ and covariance matrix Σ. The noise process is
characterized by the covariance matrix given by

Γk = E{NkN
H
k } =

[
σ2
p 0
0 σ2

vI3

]
, (7)

where Iq is an qth order identity matrix, and σ2
p and σ2

v are the noise
variances for the pressure and velocity components respectively.

3. RFS STATE DYNAMICS FORMULATION

Assume that the sources move with a velocity θ̇
m

k (in rad/s), form =
1, . . . ,mk. The source state xm,k can be constructed by cascading

the DOA θmk and the velocity θ̇
m

k , i.e., xm,k = [θmk , θ̇
m

k ]T . The CV
model [13] is employed to model the source dynamics given as

xm,k = Fxm,k−1 +Gvk, (8)

where the coefficient matrix F and G are defined respectively by

F =

[
1 ΔT
0 1

]
⊗ I2; G =

[
ΔT2

2
ΔT

]
⊗ I2, (9)

where ΔT represents the time period in seconds between the previ-
ous and current time step, and ⊗ denotes the Kronecker product, and
v(k) is a zero-mean real Gaussian process. For tracking unknown
number of multiple acoustic sources, the parameters of interest will

be the 2-D DOA of each source and the number of sources. We
characterize these unknown parameters by using an RFS, given as

Xk = {x1,k, . . . ,xmk,k}, (10)

where mk = |Xk| is the number of sources, with | · | representing
the cardinality. For the source dynamics, we have following assump-
tions: 1) each active source follows the CV motion model; 2) the
source motions are independent of each other; and 3) the maximum
number of sources in the tracking scene is bounded by Mmax. It is
observed in [3] that for a single AVS, only up to two sources can be
uniquely identified. Hence, Mmax = 2 is chosen in this work.

Given a realization Xk−1 of the RFS state at previous time step
k − 1, the source state Xk at current step k is modeled by

Xk = Bk(bk) ∪ Sk(Xk−1), (11)

where Bk(bk) is the state vector of sources born at time step k, and
Sk(Xk−1) denotes the RFS of states that have survived at time step
k. The source birth process can be formulated as

Bk(bk) =
{ ∅, �birth; or |Xk−1| =Mmax;

{bk}, �̄birth.
(12)

where �birth and �̄birth are the hypotheses for birth process and non-
birth processes respectively, and bk is the initial state vector under
the birth hypothesis given as bk = x0 ∼ (θ0, θ̇0). The survived
state set Sk(Xk−1) can be formulated by considering a death pro-
cess. When a death process happens, the corresponding state set will
be empty, and the remaining states will evolve following the motion
dynamics equation (8). Sk(Xk−1) can thus be given as

Sk(Xk−1) =

⎧⎨
⎩

Xk−1 \ {xm,k}, �death for
mth source;⋃|Xk−1|

m=1 {Fxm,k−1 +Gvk} , �̄death.
(13)

with \ denoting the set minus, and �death and �̄death are the hypotheses
for death and non-death processes respectively. The birth and death
processes happen with prior probability Pbirth and Pdeath respectively.

The RFS state transition density can thus be expressed by taking
the product of birth PDF and survival PDF, given as

p(Xk|Xk−1) = p(Bk|Xk−1)p(Sk|Xk−1). (14)

The PDF of birth process can be formulated as

p(Bk|Xk−1) =

⎧⎨
⎩

1− Pbirth, Bk = ∅;
Pbirthp(x0), Bk = {x0};
0, otherwise.

(15)

To formulate the PDF of death process p(Sk|Xk−1), we firstly con-
sider a single source death process. Source dies with following PDF

p(Sk(xm,k−1)|Xk−1) =⎧⎨
⎩

Pdeath, Sk(xm,k−1) = ∅;
(1− Pdeath)p(xm,k|xi,k−1), Sk(xm,k−1) = {xm,k};
0, otherwise.

(16)

The total PDF of death process can be written as [10]

p(Sk|Xk−1) =P
mk−mk−1

death (1− Pdeath)
mk−1

∑
1≤i1 �=im≤mk−1

mk∏
j=1

p(xm,k|xij ,k−1), (17)
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where

∑
1≤i1 �=im≤mk−1

=

n∑
i1=1

n∑
i2=1,i2 �=i1

· · · =
n∑

i1=1

n∑
im=1,im �=im−1 �=···�=i1

.

(18)
Hence the RFS state transition PDF is formulated. In practice, Pbirth

and Pdeath are unknown and are obtained based on experimental stud-
ies. Usually, increasing Pbirth or Pdeath will enable the algorithm eas-
ier to detect the birth and death respectively of a source. However,
an very large Pbirth or Pdeath will lead to an overestimation or under-
estimation of the number of sources.

4. MEASUREMENT AND LIKELIHOOD MODEL

In practice, the measurements can either be regular signals emitted
by sources or be strange signals (which can be easily detected) due
to transient interferences. The former is modeled by equation (6)
and the later is modeled by using an empty set. This means that we
allow the sensor to ignore the strange signals and simply report an
undesired event by sending an empty set to enhance the robustness
of the algorithm. Assume that the RFS measurement is Zk. It may
be constructed by one of following cases: Zk = {Yk} if the mea-
surement is generated by a source/sources; Zk = {Nk} if it is a pure
noise; and Zk = ∅ if it fails to give any report. Given the probabil-
ity of false alarms Pf and the probability of detection Pd, the prior
probabilities of the measurement presentation can be written as

P (Zk|Xk) =
⎧⎨
⎩

(1− Pf)(1− (1− Pd)
|Xk|), Zk = {Yk};

Pf, Zk = {Nk};

(1− Pf)(1− Pd)
|Xk|, Zk = ∅.

(19)
It is obvious that when Zk = {Nk}, the measurement process is a
false alarm. The prior is thus Pf. When Zk = ∅, the measurement
process is not a false alarm and also we missed all the sources. Hence
the prior for such a case is (1−Pf)(1−Pd)

|Xk|. Since the total prior
probability must sum to unity, the prior probability for Zk = {Yk}
is naturally the rest of it. When the measurement set is generated by
a source or multiple sources, the density function is [2]

p(Zk = {Yk} |Xk) = p(Yk|x1,k, . . . ,x|Xk|,k)

= (eπ)−4N det(ΠkR̂kΠk + σ̂2Π0
k)

−N , (20)

where

Πk = A(θk)(A
H(θk)A(θk))

−1AH(θk); Π0
k = I−Πk;

σ̂2 =
1

4−mk
tr(Π0

kR̂k); R̂k =
1

N
YkY

H
k . (21)

When the measurement is due to noise, it is a circular complex white
Gaussian process. The PDF is then

p(Zk = {Nk} |Xk) = (eπ)−4N det(R̂k)
−N . (22)

When the measurement is an empty set, the likelihood is not avail-
able and only the prior will be considered. Like Pbirth or Pdeath, Pf

and Pd are decided based on some rough guess. Generally, reducing
Pf and increasing Pd are expected to enhance the robustness of the
algorithm and the capability of discovering new sources. However,
overly large values will risk the accuracy of state estimation.

The above description gives an RFS presentation for AVS sig-
nal based detection and tracking problem. For PF implementation,
we use a number of particles to approximate the posterior PDF of

the interesting parameters. Assume that we have particles X (i)
k−1 for

i = 1, . . . , L at previous time step k − 1 and the corresponding im-

portance weightw
(i)
k−1. Note that different from the PF in [13] where

each particle is a random vector, the particle drawn here is a random
set. The particles at time step k are generated according to the state
dynamic process described in Section 3, given as

X (i)
k ∼ p(X (i)

k |X (i)
k−1). (23)

Since a prior importance [12] is used, the particles are weighted by

w
(i)
k = w

(i)
k−1p(Zk|X (i)

k ). (24)

After resampling, the posterior distribution is thus approximated by

p(X (i)
k |Zk) ≈

L∑
i=1

w̃
(i)
k δX (i)

k

(Xk) , (25)

where w̃
(i)
k is the normalized weight, and δX (Y) is a set-valued

Dirac delta function defined as 1 if X ⊆ Y and 0 otherwise.
Due to an RFS presentation, each particle may differ from the

others in dimension and the elements in it have an arbitrary order.
Extracting the state estimation is thus not as straightforward as that
in the single source scenario. Based on the particles and the cor-

responding weights {X (i)
k , w

(i)
k }Li=1, the number of sources can be

approximated by

Mk ≈
L∑
i=1

w
(i)
k |X (i)

k |. (26)

Since the number of sources should be an integer, we obtain the
estimation of source number by using a rounding operation, i.e.,

M̂k = 	Mk
. Then a K-means algorithm is employed to cluster

all the RFS particles. The centers of these clusters {x̂m,k}M̂k
m=1 are

taken as the final state estimates.

5. SIMULATED EXPERIMENT

A single AVS located at the origin is used as the receiver, i.e., r =
[0, 0, 0]T . Two source signals are generated by using i.i.d. complex
circular Gaussian processes. The sampling frequency is 1kHz. We
consider following source dynamics scenario: one source starts from
time step 1 and goes on until time step 40, with the corresponding
DOA θ1,1 = (−3π/4,−π/12) and θ1,40 = (−π/4, 5π/12), and
the other is active from time step 21 to 60, with the correspond-
ing DOAs θ2,21 = (−2π/3, 3π/12) and θ2,60 = (π/3,−5π/12)
respectively. The source trajectories are depicted in Fig. 1. To sim-
ulate undesired events, we set the measurements at time step 10 and
35 as empty sets. The background noise level is evaluated by signal-
to-noise ratio (SNR), and is simulated by adding a complex white
Gaussian noise (WGN) into the received signal. In this paper, we
assume that the noise variance for the pressure and velocity compo-
nents are the same, i.e., σ2

p = σ2
v = σ2. The SNR is thus the same

across different channels. Some general parameters for PF are set
as: initial velocity v0 = [0.02 0.02]T , noise variance in CV model
σ2
φ = σ2

ψ = 4× 10−4, L = 1000, Pbirth = Pdeath = 0.15, Pf = 0.2,
and Pd = 0.9. It is worth mentioning that slightly changing these
parameters will not lead to significantly different tracking results.

Figure 1 gives the tracking results based on a single trial. To get
a rough idea of the tracking performance, we also implement Capon
beamforming method [4] here. At most two peaks are collected
in the Capon response to obtain the DOA estimates. The results
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Fig. 1. Single trial under SNR = −8dB and N = 128; (a) azimuth;
(b) elevation; and (c) source number.

show that the proposed approach is able to discover and track the
sources accurately. However, at several time steps, spurious peaks
are presented in the Capon response and result in incorrect number
of sources estimation. Also, the proposed tracking approach is able
to keep locking on the source even when the AVS fails to provide
appropriate measurements (see results at time step 10 and 35 where
measurements are empty sets).

To evaluate the average tracking performance, the optimal sub-
pattern assignment (OSPA) metric [14] is employed here. Basically,
OSPA metric transfers the cardinality estimation error into DOA er-
ror by employing a penalty value c. In this work, a moderate penalty
value c = π/4 and an exponential factor p = 2 is used (the reader is
referred to [14] for a detailed definition of c and p). Fig. 2 shows the
OSPA error over 100 Monte Carlo trials under SNR = −8dB and
N = 128, and SNR = −6dB and N = 256. Not only the proposed
approach is able to present better number of sources estimates, but
also the DOA estimation is more accurate than that of Capon ap-
proach. The proposed approach is able to discover the sources and
estimate the DOA of the sources accurately only except at time step
21 when new source appears in the tracking scene. However, it is
able to discover the new source and report its DOA quickly.

6. CONCLUSIONS AND FUTURE WORK

An RFS approach is developed for 2-D DOA tracking of a time-
varying number of acoustic sources using a single AVS in this paper.
RFS is employed to characterize the randomness of the state pro-
cess, i.e., the dynamics of source motion and the number of active
sources. Also the measurement processes are modeled by RFS since
we allow the AVS report undesired events by sending an empty set
other than received signals under regular cases. The performance of
the proposed algorithm in estimating the number of sources as well
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Fig. 2. OSPA error over 100 Monte Carlo trials.

as the source DOAs is much better than that of Capon beamforming
method. However, only a single acoustic source is considered in this
paper. Hence, future work includes developing a PF algorithm to
track multiple acoustic source using an AVS array in different noisy
environments. Also, comparing the DOA tracking performance with
that based on other tracking approaches is an interesting direction.
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