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ABSTRACT

We introduce in this paper a novel cooperative particle fil-
ter algorithm for tracking a moving emitter using received-
signal strength (RSS) measurements with unknown observa-
tion noise variance. In the studied scenario, multiple RSS
sensors passively observe independently attenuated and per-
turbed versions of the same broadcast signal transmitted by an
emitter which is moving through the sensor field and cooper-
ate to estimate the emitter state. The new algorithm differs
from previous methods by employing a parametric approxi-
mation to reduce the associated communication burden.

Index Terms— Distributed Algorithms, Particle Filters,
Emitter Tracking, RSS, Wireless Sensor Networks

1. INTRODUCTION

Distributed algorithms aim at dispersing the associated com-
putational load across several cooperative processing units,
ideally approximating the performance of a centralized equiv-
alent method. In the context of cooperative sensor networks,
most methods found in the literature assume conditional inde-
pendence of the measurements available at each node. Thus,
each node may calculate its local likelihood and spread this
information to the network in a way that the remaining nodes
can fuse them to form a global posterior.

In previous work on distributed particle filtering (PF),
nodes may be able to communicate only with its immediate
neighbors, e.g. in [1], [2], [3], [4], or may be able to broad-
cast messages to the entire network, e.g. in [5]. However,
regardless of the network topology, distributed algorithms
often rely on approximations to reduce communication bur-
den, see e.g. [2], [3], [5]. In this paper, we propose a new
low-communication-cost distributed PF scheme that allows
us to successfully track a moving emitter from independent
RSS observations corrupted by Gaussian noise with unknown
variance, in contrast to previous literature [1], [2], [3] where
the observation model parameters are perfectly known.

The remaining text is organized as follows: Sec. 2 se-
tups the problem, Sec. 3 and 4 introduce two distributed ap-

proaches to its solution. Sec. 5 offers the simulations results
and Sec. 6 summarizes the conclusions.

2. EMITTER TRACKING USING MULTIPLE RSS
SENSORS

The emitter trajectory is described by the white noise acceler-
ation model

xn+1 = Fxn + wn (1)

where xn �
[
xn ẋn yn ẏn

]T
, F is the state transition

matrix and {wn} is a sequence of independent, identically
distributed (i.i.d.) zero-mean random vectors with covariance
matrix Q. Matrices F and Q are given

F =

⎡⎢⎢⎣
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤⎥⎥⎦ (2)

Q = σ2
accel

⎡⎢⎢⎣
T 3/3 T 2/2 0 0
T 2/2 T 0 0

0 0 T 3/3 T 2/2
0 0 T 2/2 T

⎤⎥⎥⎦ (3)

where T is the sampling period and σaccel is the acceleration
standard deviation.

2.1. Observation Model

The measurements zr,0:n = {zr,0, . . . , zr,n} in dBm at the
r-th node of a network of R RSS sensors are modeled as [6]

zr,n = gr(xn) + vr,n (4)

where vr,n represents an additive zero-mean i.i.d. Gaussian
noise process with unknown variance σ2

r and gr(·) is a non-
linear function given by

gr(x) = P0 −Kr10 log

(
‖Hx− xr‖

d0

)
(5)
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where xr represents sensor position, (P0, d0, Kr) are known
model parameters (see [6] for details), and H is a 2× 4 projec-
tion matrix such that H(1, 1) = H(2, 3) = 1 and H(i, j) = 0
otherwise. Using a Bayesian approach, we also model the un-
known noise variance as a realization of a random variable
distributed a priori as σ2

r ∼ IG(σ
2|α, β) where IG denotes

the inverse Gamma distribution and {α, β} are the model’s
hyperparameters.

3. CENTRALIZED SOLUTION VIA PARTICLE
FILTERS

Particle Filters approximate the minimum mean-square error
(MMSE) estimate of the emitter state, xn, at instant n, given
all present and past observation z1:R,0:n in the network as [7]

x̂n|n = E {xn|z1:R,0:n} ≈

Q∑
q=1

w(q)
n x(q)

n (6)

where Q is the number of particles x(q)
n , sampled from an im-

portance function π(·), and w
(q)
n are the importance weights.

The so-called blind importance function can be written as
π(xn|x

(q)
0:n−1, z1:R,0:n) = p(xn|x

(q)
n−1), which is determined as

p(xn|x
(q)
n−1) = N (xn|Fx(q)

n−1, Q), where N (·|m, Σ) denotes
a multivariate Normal distribution with mean vector m and
covariance matrix Σ. The importance weights can in turn be
recursively propagated as

w(q)
n ∝ w

(q)
n−1p(z1:R,n|x

(q)
0:n, z1:R,0:n−1). (7)

On the other hand, assuming that p(z1:R,0:n|x0:n, σ2
1:R) =∏R

r=1 p(zr,0:n|x0:n, σ2
r) and that p(σ2

1:R|x0:n) =
∏R

r=1 p(σ2
r

|x0:n) =
∏R

r=1 p(σ2
r ), we can show that

p(z1:R,n|x
(q)
0:n, z1:R,0:n−1) =

R∏
r=1

p(zr,n|x
(q)
0:n, zr,0:n−1). (8)

Finally, under the model assumptions, it follows after some
algebraic manipulations that

p(zr,n|x
(q)
0:n, zr,0:n−1) =

=

∫ ∞

0

p(zr,n|x(q)
n , σ2

r )p(σ2
r |x

(q)
0:n, zr,0:n−1)dσ2

r

∝

[
β

(q)
r,n−1

]αn−1

Γ(αn−1)

Γ(αn)[
β

(q)
r,n

]αn

(9)

where β
(q)
r,n and αn can be recursively computed by

αn = αn−1 +
1

2
(10)

β(q)
r,n = β

(q)
r,n−1 +

1

2

[
zr,n − gr(x(q)

n )
]2

, (11)

gr(·) is calculated as indicated in (5), and Γ(·) denotes the
Gamma function defined by the improper integral Γ(z) =∫ ∞

0
tz−1e−t dt .
In a centralized approach, all observations are sent to a

central node to be incorporated in the posterior probability
density function (p.d.f.). This approach requires that the cen-
tral node know the observation model parameters of the en-
tire sensor network and be able to process all measurements
simultaneously. Moreover, if the fusion center becomes un-
available, the system collapses.

3.1. Cooperative Approach

An alternative to the aforementioned centralized approach is
to use a cooperative scheme where the computation of the im-
portance weights is distributed over different network nodes.
Substituting (8) into (7) leads to the weight update rule

w(q)
n ∝ w

(q)
n−1

R∏
r=1

λ(q)
r,n(x(q)

n ) (12)

where λ
(q)
r,n(x(q)

n ) � p(zr,n|x
(q)
0:n, zr,0:n−1) is calculated ac-

cording to (9) through (11).
An exact decentralized implementation of (7) is as fol-

lows: at a given iteration, each node r ∈ R � {1, . . . , R}
maintains a set of weighted particles describing the emitter
estimated state and broadcasts its local updated model’s hy-
perparameters β

(q)
r,n, q ∈Q � {1, . . . , Q}, to the other nodes.

Conversely, each node receives the hyperparameters from the
other nodes and incorporates them in its posterior p.d.f. by
means of equation (12). Synchronized sampling from the
prior transition p.d.f. and synchronized resampling accord-
ing to the weights, see [2], guarantee that all nodes have the
same set of particles.

Algorithm 3.1 is a decentralized regularized particle filter
(DCRPF) that meets the aforementioned approach. This algo-
rithm reduces the computational burden per filter (compared
to the centralized solution) by spreading it over the network
nodes, but requires in turn the transmission of Q real numbers
per node at each time stamp n.

Algorithm 3.1: DCRPF(zs,n, {(x(q)
n−1, w

(q)
n−1)}, Θs,n−1)

〈αn−1, {β
(q)
r,n−1}〉 ← Θs,n−1; where q ∈Q and r ∈R

for each q ∈Q

do

{
x̄(q)

n ∼ p(xn|x
(q)
n−1)

Calculate β
(q)
s,n and broadcast it

Block until receive all {β(q)
r,n}, r 
= s

for each q ∈Q

do
{
w̄

(q)
n ∝ w

(q)
n−1

∏R

r=1 λ
(q)
r,n(x̄(q)

n )

{(x(q)
n , w

(q)
n , l(q))} ← REGULARIZE({(x̄(q)

n , w̄
(q)
n )})

Θs,n ← 〈αn, {β
(l(q))
r,n }〉

return ({(x(q)
n , w

(q)
n )}, Θs,n)
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where λ
(q)
r,n(x̄(q)

n ) is calculated as previously stated and the
regularization step [8] is performed as shown in Algorithm
3.2 taking Dn such that DnDT

n corresponds to the empir-

ical covariance of the weighted particles {(x̄(q)
n , w̄

(q)
n )} and

h = hopt/2 (see [8] for further details).

Algorithm 3.2: REGULARIZE({(x̄(q)
n , w̄

(q)
n )})

for each q ∈Q

do

⎧⎪⎨⎪⎩
l(q) ∼ {1, 2, . . . , Q}; P ({L(q) = l}) = w̄

(q)
n

x(q)
n ← x̄(l(q))

n + hDnx∗; where x∗ ∼ N (x|0, I))
w

(q)
n ← 1/Q

return ({(x(q)
n , w

(q)
n , l(q))})

At each node r, the filter must be initialized from a prior
distribution of the emitter state, i.e. x(q)

0 ∼ p(x0) and w
(q)
0 =

1/Q for all q ∈ Q, and assuming an initial inverse Gamma
distribution IG(σ2|α0, β0) for the unknown parameter σ2

r .

4. APPROXIMATE DISTRIBUTED PARTICLE
FILTER

As discussed before, despite its asymptotic optimality, the
DCRPF algorithm has inter-node communication require-
ments that may be prohibitive in most practical scenarios.
As observed in [5], the communication burden may be con-
siderably reduced though by making suboptimal parametric
approximations that allows one to drop the dependence of the
coefficients λ

(q)
r,n in (12) on the particle label q.

Assuming now a Monte Carlo representation of the
posterior p(xn−1|z1:R,0:n−1) by the properly weighted set

{(x(q)
n−1, w

(q)
n−1)} and from (8), one can show that the marginal

p(σ2
r |z1:R,0:n−1) is approximated by the weighted sum

p(σ2
r |z1:R,0:n−1) ≈

Q∑
q=1

w
(q)
n−1IG(σ

2
r |αn−1, β

(q)
r,n−1). (13)

To reduce the communication requirements, we propose to
further approximate this marginal by a single inverse Gamma
distribution with parameters (α̃r,n−1, β̃r,n−1) chosen such
that the approximated distribution IG(σ2

r |α̃r,n−1, β̃r,n−1)
matches the first and second moments of the marginal (13).

After some algebraic calculations, it follows that α̃r,n−1 =

2 + Ê2
n−1

[
σ2

r

]
/V̂ ARn−1

[
σ2

r

]
and β̃r,n−1 = (α̃r,n−1 −

1)Ên−1

[
σ2

r

]
, where Ên−1

[
σ2

r

]
and V̂ ARn−1

[
σ2

r

]
are ob-

tained from
{

(w
(q)
n−1, β

(q)
r,n−1)

}
and αn−1 using the expres-

sions in Ref. [5].
At a given node s, the weight update rule (12) is approxi-

mated then by

w̄(q)
n ∝ w

(q)
n−1

⎡⎣ R∏
r=1,r �=s

λ̃r,n(x(q)
n )

⎤⎦λ(q)
s,n(x(q)

n ) (14)

where

λ̃r,n(x(q)
n ) =

[
β̃r,n−1

]α̃r,n−1

Γ(α̃r,n−1)

Γ(α̃r,n)[
β̃

(q)
r,n

]α̃r,n

(15)

α̃r,n = α̃r,n−1 +
1

2
(16)

β̃(q)
r,n = β̃r,n−1 +

1

2

[
zr,n − gr(x(q)

n )
]2

. (17)

Note that, once the particle update rule is different at each
node, this approach no longer guarantees that particles at each
node are the same.

Algorithm 4.1 outlines the approximate distributed regu-
larized particle filter (ADRPF).

Algorithm 4.1: ADRPF(zs,n, {(x(q)
n−1, w

(q)
n−1)}, Θs,n−1)

〈αn−1, {β
(q)
s,n−1}〉 ← Θs,n−1; where q ∈ Q

Calculate (α̃s,n−1, β̃s,n−1)

Broadcast (α̃s,n−1, β̃s,n−1, zs,n) and block until receive
all {(α̃r,n−1, β̃r,n−1, zr,n)}, r 
= s
for each q ∈Q

do

{
x̄(q)

n ∼ p(xn|x
(q)
n−1)

w̄
(q)
n ∝ w

(q)
n−1

[∏R

r=1,r �=s λ̃r,n(x̄(q)
n )

]
λ

(q)
s,n(x̄(q)

n )

{(x(q)
n , w

(q)
n , l(q))} ← REGULARIZE({(x̄(q)

n , w̄
(q)
n )})

Θs,n ← 〈αn, {β
(l(q))
s,n }〉

return ({(x(q)
n , w

(q)
n )}, Θs,n)

At a given iteration, a node s calculates the approximated
model’s hyperparameters (α̃s,n−1, β̃s,n−1) and broadcasts
them to the other nodes. Furthermore, it receives the hyper-
parameters (α̃r,n−1, β̃r,n−1) from the other nodes (r 
= s).
Afterwards, it uses (14) to update the importance weights.

In contrast to the DCRPF algorithm, ADRPF requires
that, at time stamp n, each node r broadcasts just three real
numbers: the local observation zr,n itself and the approxi-
mated hyperparameters (α̃s,n−1, β̃s,n−1), assuming, without
loss of generality, the same (P0, d0) for all nodes. More-
over, each node knows the observation model parameters
{(Kr, xr)} of the entire sensor network.

5. SIMULATION RESULTS

The performance of both algorithms were assessed via simu-
lations consisting of 100 independent Monte Carlo runs. We
computed the root-mean-square (RMS) error norm associated
with the estimated emitter position at each time stamp n given
all realizations. The simulated system has R = 4 RSS sensors
with parameters P0 = 1dBm, d0 = 1m, Kr = 2. Fig. 1 indi-
cates the sensor positions. It also shows one realization of the
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emitter trajectory generated for T = 1s, σaccel = 0.05m/s2

and x0 =
[
25m 0.5m/s 50m 0.5m/s

]T
.
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Fig. 1. Evaluated scenario.

Both filters employed Q = 500 particles to estimate the
emitter state. Particles were initialized considering a Gaus-

sian prior distribution, with mean
[
x0 y0

]T
and covariance

matrix diag(202, 202), for the emitter position and a Gaussian

prior distribution, with mean
[√

ẋ2
0 + ẏ2

0 arctan (ẏ0/ẋ0)
]T

and covariance matrix diag(0.32, (5π/8)2), for the emitter
velocity. Furthermore, at each node, the hyperparameters
were initialized such that α0 = 2 and β

(q)
r,0 = 0.1 for all par-

ticles q. Finally, the unknown observation model parameters
were kept fixed during all simulations and were chosen as
σ1 = 0.09, σ2 = 0.08, σ3 = 0.1 and σ4 = 0.11.

In Fig. 2, we show the evolution of the RMS error norm
of the emitter position estimates for both algorithms. As one
can observe, the ADRPF performs slightly worse initially
than DCRPF, specially, at node S4, since it is the farthest
node from emitter at that time. Although being nearly the
same for both algorithms, the stationary error increases since
the emitter tends to leave the sensor field as suggested in Fig.
1. Finally, it is worth mentioning that the cooperative scheme
significantly outperformed the isolated nodes, which were
not able to individually estimate the emitter state successfully
without cooperation.
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Fig. 2. Evolution of the estimated position RMS error norm.

6. CONCLUSIONS

In this work, we presented two distributed algorithms for
tracking a moving emitter cooperatively by means of inde-
pendent RSS observations. We also introduced a suitable
parametric approximation to reduce the inter-node commu-
nication burden. The simulations show that the proposed
approximation leads to a modest degradation in performance
compared to an exact decentralized approach, but reduces the
associated communication cost in our particular scenario by
a factor of two orders of magnitude.

7. REFERENCES

[1] S. Farahmand, S. I. Roumeliots, and G. B. Giannakis,
“Particle filter adaptation for distributed sensors via set
membership,” in IEEE Intl. Conf. on Acoustics Speech
and Sig. Proc., Dallas, TX, March 2010.

[2] D. Uztebay, M. Coates, and M. Rabbat, “Distributed aux-
iliary particle filter using selective gossip,” in IEEE Intl.
Conf. on Acoustics Speech and Sig. Proc., Prague, Czech
Republic, May 2011.

[3] O. Hlinka, O. Sluciak, F. Hlawatsch, P. Djuric, and
M. Rupp, “Distributed gaussian particle filtering using
likelihood consensus,” in IEEE Intl. Conf. on Acous-
tics Speech and Sig. Proc., Prague, Czech Republic, May
2011.

[4] C. J. Bordin Jr. and M. G. S. Bruno, “Consensus-based
distributed particle filtering algorithms for cooperative
blind equalization in receiver networks,” in IEEE Intl.
Conf. on Acoustics Speech and Sig. Proc., Prague, Czech
Republic, May 2011.

[5] C. J. Bordin Jr. and M. G. S. Bruno, “Nonlinear dis-
tributed blind equalization using network particle filter-
ing,” in IEEE/SP 15th Workshop on Statistical Signal
Processing, August 2009.

[6] N. Patwari, A.O. Hero III, M. Perkins, N.S. Correal, and
R.J. O’Dea, “Relative location estimation in wireless sen-
sor networks,” IEEE Transactions on Signal Processing,
vol. 51, no. 3, pp. 2137–2148, 2003.

[7] Arnaud Doucet, Simon Godsill, and Christophe An-
drieu, “On sequential monte carlo sampling methods for
bayesian filtering,” Statistics and Computing, vol. 10, no.
3, pp. 197–208, 2000.

[8] C. Musso, N. Oudjane, and F. Le Gland, “Improving reg-
ularised particle filters,” in Sequential Monte Carlo Meth-
ods in Practice, chapter 12. New York: Springer-Verlag,
2001.

2632


