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Abstract— In this work, we study the localization of mobile
signal emitters using time of arrival (TOA) measurement and
additional urban street information. Two algorithms are proposed
to improve the localization performance by integrating street
information with the TOA measurement. The first algorithm
exhaustively searches of all possible road paths. For each possible
path, the source location is estimated based a semidefinite
programming (SDP) algorithm by minimizing the maximum
error measurement between the observed propagation time and
the modeled propagation time. Only location on a street that
satisfies the minimum mean square error yields estimation
output. To reduce complexity, our second joint optimization
algorithm combines the two steps together and jointly optimizes
the path selection and source location. Numerical results show
that both algorithms can improve the localization performance.
Our proposed joint optimization approach is more suitable for
practical use because of lower complexity and good performance.

I. INTRODUCTION

Source localization has now attracted widely research at-
tention in wireless networks. It has a lot of applications,
such as emergency response, mobile gaming, target tracking,
signal routing, interference alignment, and wireless security
[1] [2] [3]. These applications necessitate that we develop
techniques for estimating the location of mobile users in both
outdoor and indoor environments. In outdoor environment,
global positioning system (GPS) can be used to provide
location service. However, it needs support in indoor and
some urban situations where the satellite can not be directly
found. Therefore, it is necessary to develop other localization
techniques besides GPS.

There exist various established methods for source local-
ization that are based on measurement models of received
signal time of arrival (TOA), distance measurement, received
signal strength (RSS), signal angle of arrival (AOA), and their
combinations. In some radio signal applications, distance in-
formation is not directly available and must be estimated based
on signal measurement such as strength and time of arrival.
On the other hand, received signal strength measurements
can also be very sensitive to the channel environment. For
example, in an environment with rich scatters, signal strength
measurement can be difficult to model and relate to the source
location information. For these reasons, other measurement
models may be more practical. In this work, we are particularly
interested in the simple model based on received signals’ time
of arrival measurement.

In most radio environments with direct line-of-sight radio
link or with scatters close to the source or sensors, the TOA
measurement is a direct function of the distance between
the source and the sensor as the radio propagation velocity
is well known. One practical obstacle is the typical lack of
synchronization between the source and the receiver. In other
words, the receivers often are not aware of the precise starting
time instant of source transmission t0. Therefore, the source
location and t0 should be estimated jointly. Several existing
works assume source sensor coordination such that t0 is known
to the sensors [4] [5]. However, by requiring cooperation
between the source and the sensors, such assumption severely
limits the practical application of related TOA algorithms.

In addition to the above mentioned measurements directly
obtained from the signal transmitted between the source and
receiver, there is some additional information that can be
used to assist source localization. For example, in cellular
networks, Cell-ID can provide a rough location estimation of
the mobile user based on the cell size. From the Cell-ID, we
can obtain information about which area the mobile user is
in. Furthermore, the map of that area is a priori known to
us, and there is a limit number of mobile streets (paths) for
the mobile unit in that area. The mobile user should be on
one of the streets (paths). Therefore, the additional roadmap
information can be used to assist source localization.

In this work, we will develop source localization algorithms
that utilize the practical TOA measurement with unknown t0.
We integrate into our problem formulation a priori street
(path) information in areas where the source may reside.
We present two methods. The first one is a straightforward
high complexity algorithm that exhaustively test all possible
mobile paths. We estimate the source location in each path
based on a semidefinite programming (SDP) algorithm by
minimizing the maximum error measurement between the
observed propagation time and the modeled propagation time.
Our second algorithm integrates the location estimate and the
most likely path decision into a joint estimation problem.
By comparison, the second method is less computationally
intensive. Both methods are shown to be effective.

The remainder of the paper is organized as follows. In
Section II, we describe the system model we use in this paper.
Section III presents two different localization approaches for
the model. In Section IV, we illustrate the numerical results,
followed by the conclusion in Section V.
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II. PROBLEM STATEMENT

Consider the scenario that there are N anchor nodes with
location x1,x2, . . . ,xN in a 2-D field, where xi = [xi1 xi2]

T .
These anchor nodes cooperate by helping a data fusion center
(DFC) determine an unknown source location y. Given an
LOS propagation path, the time of arrival measurement ti at
anchor node xi can be easily modeled as

ti =
1

c
‖xi − y‖+ t0 + ni, i = 1, 2, · · · , N, (1)

where c is the speed of light, ‖·‖ denotes the Euclidean norm,
t0 is the unknown time instant at which the source transmits
the signal to be measured, and ni is the additive measurement
noise (error) with zero mean.

We assume that we have the additional roadmap information
near the source, i.e. the source y = [y1 y2]

T must be on one
of the K paths (streets) in that area. We assume that the paths
are straight lines with width δ0, which can be denoted by

y2 = a11y1 + a12 + a13δ,

y2 = a21y1 + a22 + a23δ,

· · ·
y2 = aK1y1 + aK2 + aK3δ,

(2)

where |δ| ≤ 1

2
δ0, and ai3 =

√
a2i1 + 1 for i = 1, · · · ,K. Let

p = [p1 p2 . . . pK ]T be the vector to indicate which path
the source is in, where pi = 0 or pi = 1 for i = 1, . . . ,K,
and

∑K
i=1

pi = 1. Then the relation between y1 and y2 can
be expressed as:

y2 =
[
y1 1 δ

]
·A · p, (3)

where A =

⎡
⎣ a11 a21 · · · aK1

a12 a22 · · · aK2

a13 a23 · · · aK3

⎤
⎦.

Without any other prior assumptions on the statistics of
the TOA measurements, a least square (LS) estimator can be
used for the source localization problem. The estimator is to
minimize the following mean square error:

F =

N∑
i=1

(
ti −

1

c
‖xi − y‖ − t0

)2

. (4)

Combining the constraints, we have the following LS problem:

min
y,t0,p,δ

N∑
i=1

(
ti −

1

c
‖xi − y‖ − t0

)2
s.t. y = [y1 y2]

T ,

y2 =
[
y1 1 δ

]
·A · p,

|δ| ≤ 1

2
δ0,

pi = 0 or pi = 1, for i = 1, . . . ,K,
K∑
i=1

pi = 1.

(5)

This is a non-convex mixed integer nonlinear optimization
problem. In the next section, we will present two algorithms
to solve this complicated problem.

III. LOCALIZATION ALGORITHM

Since (5) is a non-convex mixed integer nonlinear optimiza-
tion problem, it is difficult to solve it directly. One approach is
an exhaustive search method. We estimate the source location
for each path based on a SDP algorithm [6], and choose the
location with the minimum mean square error as the final
output. A computationally less intensive alternative is to relax
some constraints in (5) to estimate mobile path and location
together. We now describe these two methods.

A. K-min Search

The LS formulation (5) is optimum in the maximum likeli-
hood sense when the TOA measurement noise is assumed to be
i.i.d. Gaussian. In practice, however, TOA measurement noise
may exhibit different characteristics. Therefore, there is strong
incentive for us to develop effective localization algorithms
that are less dependent of noise assumptions.

Steering away from the LS objective function, we can
rewrite the TOA measurement of (1) into

ti − t0 =
1

c
‖xi − y‖+ ni. (6)

Squaring in both sides, we get

(ti − t0)
2
−

1

c2
‖xi − y‖2 = (

2

c
‖xi − y‖+ ni)ni︸ ︷︷ ︸

ωi

, (7)

for i = 1, · · · , N. The right side of (7) is a noise term ωi that
is not independent for different indices i. At modest to high
SNR, 2

c
‖xi − y‖ dominates ni to allow ωi ≈

2

c
‖xi − y‖ni.

One way to estimate the optimum y without assuming any
particular characteristics on ωi is to minimize the �∞ norm
of ωi. This approach simply tries to minimize the peak error
without making any assumption on the noise distribution or on
the noise correlation. Therefore its performance is expected to
be less sensitive to the noise distribution or correlation [6]. We
propose to adopt the min-max criterion for location estimation

ŷ = argmin
y,t0

max
i=1,··· ,N

∣∣∣∣(ti − t0)
2 −

1

c2
‖xi − y‖2

∣∣∣∣ . (8)

.
Note that this min-max formulation (8) is a non-convex

problem. We need to do some relaxations below. First, let
us introduce two auxiliary variables ys = yTy and ts = t2

0
.

Then we have

ŷ = arg min
y,ys,t0,ts

max
i=1,··· ,N

|ts − 2tit0 + t2i

−
1

c2
(ys − 2xT

i y + xT
i xi)|,

(9)

which is a convex function in terms of variables y, ys, t0,
and ts. However, the two equality constraints ys = yTy

and ts = t2
0

are not convex and need to be relaxed into
approximate convex constraints. In order to transform the
problem formulation into a convex optimization problem, we
introduce two convex relaxations on the equality constraints.
Specifically, we relax the two equalities ys = yTy and ts = t2

0

into inequalities ys � yTy and ts � t2
0
, respectively. Both
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inequalities can be conveniently expressed in terms of linear
matrix inequalities:[

I y

yT ys

]
� 0,

[
1 t0
t0 ts

]
� 0. (10)

For a given p, we have the following SDP convex optimiza-
tion problem:

min
y,ys,t0,ts,δ

θ

s.t. − θ ≤ ts − 2tit0 + t2i −
1

c2
(ys − 2xT

i y + xT
i xi) ≤ θ,

i = 1, · · · , N,[
I y

yT ys

]
� 0,

[
1 t0
t0 ts

]
� 0,

y = [y1 y2]
T ,

y2 =
[
y1 1 δ

]
·A · p,

|δ| ≤ 1

2
δ0.

(11)

Because there are K choices of p in total, we propose the
K-min algorithm by solving (11) for different p using interior
point methods such as SeDuMi [7]. The final location estimate
is selected by identifying the SDP result that generates the
minimum objective function value (4).

B. Joint Optimization Solution

We noted that the K-min search approach needs to solve
the optimization problem (11) for K times. The complexity
may be higher if the suspected area of the mobile unit is large
and involves multiple street intersections. Alternatively, we can
solve p, y, and t0 together in (5) by relaxing the constraints.
We now present our joint optimization solution (JOS).

Assuming z = [z1, · · · , zK ]T , where zi = piy1. Let
a1 = [a11, · · · , aK1]

T , a2 = [a12, · · · , aK2]
T , a3 =

[a13, · · · , aK3]
T , u = [1, · · · , 1]T , then we have

y1 = uT z,

y = [uT z,aT
1
z+ aT

2
p+ aT

2
δ]T .

We relax the original LS optimization problem (5) to the
following formulation:

min
y,z,p,ys,t0,ts,δ

θ

s.t. − θ ≤ ts − 2tit0 + t2i −
1

c2
(ys − 2xT

i y + xT
i xi) ≤ θ,

i = 1, · · · , N,[
I y

yT ys

]
� 0,

[
1 t0
t0 ts

]
� 0,

y = [uT z aT
1
z+ aT

2
p+ aT

2
δ]T ,

|δ| ≤ 1

2
δ0,

0 ≤ pi ≤ 1, for i = 1, . . . ,K

K∑
i=1

pi = 1,

[
I p

pT 1

]
� 0.

(12)

Once again, the joint optimization formulation (12) can be
solved using SeDuMi [7].

Compared with K−min, JOS can estimate the source
location by solving one SDP instead of K. Therefore, its
complexity is much lower than the K−min search formulation.
However, JOS requires more relaxations and this may induce
some performance loss. We will compare the performance of
these two approaches in the next section.

IV. NUMERICAL RESULT

In this section, we compare the performance of proposed
algorithms in Section III. We label the two algorithms as
K−min and JOS in our simulation results. In addition, we
also compare the performance of the proposed algorithms with
the min-max TOA algorithm in [6] without exploiting the
additional path information, labeled as ”Simple TOA”. We also
include the Cramér-Rao lower bound (CRLB) as a reference.

In the following examples, we place eight sensors in a 2-
dimensional area at x1 = [400, 400]T , x2 = [400,−400]T ,
x3 = [−400, 400]T , x4 = [−400,−400]T , x5 =
[800, 800]T , x6 = [800,−800]T , x7 = [−800, 800]T , x8 =
[−800,−800]T . We evaluate the mean squared error (MSE) of
the source location as the performance metric against different
strengths of the noise standard deviation. For simplicity, we
convert the noise into the distance domain.

Example 1: In this example, the source is possibly in one
of the 3 paths, where

A =

⎡
⎣ 100 −1 0

0 −100 −50
100 1.414 1

⎤
⎦ .

The source is located at [0,−100]T on the second path, and
δ0 = 4. In Fig. 1, we show the performance of different
approaches as well as the CRLB. K−min clearly gives best
performance in this example. The JOS algorithm delivers
slightly worse results than K−min, but performs far better
than the pure TOA algorithm without the path information.
Therefore, we find that additional roadmap information can
substantially improve the localization performance.

Example 2: In this example, we assume there are 6 paths,
where

A =

⎡
⎣ 100 1.5 −1 0 −20 12

0 −50 −100 −50 0 30
100 1.803 1.414 1 20.025 12.042

⎤
⎦ ,

and δ0 = 4. The source is located at [0,−100]T on the third
path. In Fig. 2, we illustrate the performance of different
algorithms. We can see the gap between K−min and JOS
becomes less evident. Both are better than the simple TOA
algorithm. Since there are 6 possible traveling paths, the
objective function value (4) can be very close to one other.
Thus, sometimes even K−min may fail to find the correct
path. For this reason, the results of K-min and JOS are similar.
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Fig. 1. Comparison of different localization schemes, 3 paths case.
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Fig. 2. Comparison of different localization schemes, 6 paths case.

Example 3: In this example, there are still 6 paths as in
Example 2 but the source is at [0,−50]T , which is the inter-
section of the second and the fourth path. The performance
of different algorithms is shown in Fig. 3. We can see in this
case, the performance of the two new methods are very close.
In addition, we observed that the objective function value (4)
for K−min is very close for the second and the fourth linear
paths. And the associate pi for JOS is close 0.5. Therefore,
our two algorithm have very similar performance.

V. CONCLUSION

We study the problem of source localization based on time
of arrival model with additional roadmap information. We
present two algorithms to improve the localization perfor-
mance by exploiting the TOA measurement and additional
street path information jointly. Our first algorithm K−min
exhaustively searches of all the possible paths, and selects path
and the resulting location that admits the output error. Our
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Fig. 3. Comparison of different localization schemes, 6 paths case.

JOS algorithm reduces the algorithm complexity by jointly
optimizing the path selection and source location estimate. We
present numerical results to illustrate the effective performance
by both proposed algorithm in improving the localization
performance.
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