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ABSTRACT

Acoustic source localization often relies on the free-space/far-field
model. Recent work exploiting spatio-temporal sparsity promises to
go beyond these scenarios. However, it requires the knowledge of
the transfer functions from each possible source location to each mi-
crophone. We propose a method for indoor acoustic source localiza-
tion in which the physical modeling is implicit. By approximating
the wave equation with the finite element method (FEM), we nat-
urally get a sparse recovery formulation of the source localization.
We demonstrate how exploiting the bandwidth leads to improved
performance and surprising results, such as localization of multiple
sources with one microphone, or hearing around corners. Numerical
simulation results show the feasibility of such schemes.

Index Terms— Source localization, finite element method,
sparse approximation, indoor localization, reverberant localization

1. INTRODUCTION

A common assumption in source localization methods such as beam-
forming, subspace methods or different parametric methods is that
the sound propagates in free space [1]. Perfomance of these meth-
ods degrades substantially in the presence of multipath. Another fre-
quent assumption is that the sources are in the far-field. This means
that the wavefront generated by a source arrives at all microphones
from the same direction.

These assumptions are essentially violated in rooms. We de-
scribe a method for localizing acoustic sources inside a room unaf-
fected by this difficulty.

In fact, by correctly modeling the wave propagation effects, we
can use the room to our advantage. In addition to estimating the
source locations using a microphone array, we observe results such
as localization of a pulse source using only one microphone, or lo-
calization of sources hidden behind corners.

We note that the idea of exploiting a known propagation model
for source localization is known as matched-field processing, with
early work in underwater acoustics already in the ’70s [2].

1.1. Related Work

Two recent papers approach the source localization as a sparse re-
construction problem. In [3], the authors exploit the spatial sparsity
of the sources. Since the sources are few, the vector of active lo-
cations is sparse and they reconstruct it using convex optimization.
They also show how to treat wideband sources. Similarly, in [4]
the authors assume the sources to be sparsely located on some grid.
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They further assume the temporal sparsity in a known dictionary and
show how this assumption improves the estimation performance.

Both of these works assume the knowledge of transfer functions
from all the possible source locations to all the possible microphone
locations. In free space this modeling is easy, but in indoor spaces it
could be a prohibitive requirement. Experiments therefore treat free-
space/far-field situations, or ray simulations with a small number of
reflections.

1.2. Main Contributions and Outline

We propose a method that directly relates acoustics with sparsity
in arbitrary geometries. This is achieved by modeling the problem
using the wave equation and then approximating the solution with
the finite element method (FEM). We exploit the spatial sparsity of
the sources, but assume no sparsity in the temporal domain. We
assume however the knowledge of the room geometry.

In this paper we focus on the description of the physical aspect
of the method. Our aim is to advocate what we consider to be a
powerful concept. We are not concerned with the performance of
associated sparse approximation methods and use them as an off-the-
shelf technology with some modifications. We leave the discussion
of further improvements, such as adaptive meshing and fine tuning
of the sparse approximation algorithms, to a forthcoming extended
version of this paper.

The paper is structured as follows. In Section 2 we describe the
source model, the acoustic wave equation, and we derive the FEM
matrix form. We formulate the source localization problem in the
FEM context in Section 3, and furthermore show how to take ad-
vantage of the source bandwidth. We also show that knowing the
source spectrum enables us to use simple linear inversion for local-
ization. We verify the effectiveness of the method through numerical
experiments in Section 4.

2. PROBLEM STATEMENT AND THE WAVE EQUATION

2.1. Setup

Consider K localized acoustic sources inside a room described by a
region D ⊂ R

3. The setup assumed throughout the paper is illus-
trated in Fig. 1.

Assume that the spatial distribution of the sources is given by a
set points at locations {xk}Kk=1, xk ∈ D. The kth source’s wave-
form is given by a signal sk ∈ L2

R([0,∞)). These signals may
represent music, speech or other arbitrary sounds. Total source dis-
tribution inside the room is then described by a function f ,

f(x, t) =
K∑

k=1

sk(t)δ(x− xk). (1)
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Fig. 1. Setup of the problem. We want to localize the acoustic

sources emitting waveforms {sk}Kk=1, located at {xk}Kk=1 with mi-

crophones at {ym}Mm=1 inside a known room D.

Sources generate pressure variations, which we denote by
u(x, t). We observe u(x, t) with M microphones located at

{ym}Mm=1 and attempt to solve the following problem.

Problem 1. Given access to measurements of sound pressure
{u(ym, t) + εm(t)}Mm=1 inside a known room D, where {εm}Mm=1

accounts for the modeling mismatch and noise, find the source
locations {xk}Kk=1.

2.2. Wave and Helmholtz Equation

Acoustic wave motion corresponds to changes of acoustic pressure
around the mean value (often the atmospheric pressure) [5]. Under
some fairly nonrestrictive assumptions, the pressure u(x, t) satisfies
the following PDE, called the wave equation,

−Δu+
1

c2
∂2u

∂t2
= f, (2)

with f being the source term.
Many applications do not require a full time-dependent wave

equation. The system is analyzed under the assumption of a time-
harmonic field u(x, t) = û(x, ω)e−iωt, which is equivalent to tak-
ing the Fourier transform of the wave equation (2) with respect to
time. This leads to the Helmholtz equation,

−Δû(x, ω)− (ω2/c2)û(x, ω) = f̂(x, ω). (3)

Equation (3) does not involve time derivatives since the Fourier
transform simplified them into a multiplication with the frequency
squared.

Accounting for the source model (1), the Helmholtz equation (3)
becomes

−Δû(x, ω)− (ω2/c2)û(x, ω) =

K∑
k=1

ŝ(ω)δ(x− xk), (4)

where ŝ is the Fourier transform of s.
To have a complete characterization of the wave equation, we

must specify the boundary conditions. In this paper we assume
sound-hard walls corresponding to the Neumann boundary condition
〈∇u(x, t),n(x)〉 = 0, x ∈ ∂D, where n(x) is the unit normal on
the wall and 〈·, ·〉 denotes the inner product. We note however that
arbitrary impedance conditions are possible.

Fig. 2. Triangular mesh in a plane. Elements φ are pyramids of

height 1.

2.3. Finite Elements for Helmholtz Equation

Consider now the Helmholtz equation (3). To arrive at the FEM
formulation, we multiply both sides of the equation by a test function
v and integrate over the room,

−
∫
D

Δû v dx− k2

∫
D

ûv dx =

∫
D

f̂v dx. (5)

Intuitively, if we require that this holds for all possible test functions
v, then this form is equivalent to the original pointwise equation.
Actually we require it to hold for all v that are admissible. For more
details, see [6].

Equation (5) is asymmetric in that û “has” second derivatives,
while v “has” no derivatives. A more symmetric form is obtained
after applying the Green’s theorem to the first integral,∫

D

〈∇û,∇v〉 dx− k2

∫
D

ûv dx =

∫
D

f̂v dx. (6)

Equation (6) is called the weak form of the Helmholtz equation.
Note that the additional term produced by the application of Green’s
theorem vanishes thanks to the boundary condition.

Let us now use the weak form to find an approximate solution
û� ≈ û as a linear combination of N trial functions {φk}Nk=1,

û�(x, ω) =
∑N

i=1 û
�
ω,iφi(x). Plugging û� into the weak form

(6), we get one linear equation in N unknowns
{
û�
ω,i

}N

i=1
. The

problem is now reduced to the computation of these coefficients. To
obtain the necessary N equations, we simply pick N test functions
v1, . . . , vN .

Putting the pieces together in (6), the weak form becomes

∫
D

〈
∇
( N∑

i=1

û�
ω,iφi

)
,∇vj

〉
dx− ω2

c2

∫
D

( N∑
i=1

û�
ω,iφi

)
vj dx

=

∫
D

f̂vj dx, 1 ≤ j ≤ N. (7)

For each j we have a linear equation with the unknowns û�
ω,1, . . . , û

�
ω,N .

Written more compactly, the system is

N∑
i=1

[Ki,j − (ω2/c2)Mi,j ]û
�
ω,i = f̂i, 1 ≤ j ≤ N. (8)

where Ki,j =
∫
D
〈∇φj ,∇vi〉 dx, Mi,j =

∫
D
φivj dx and f̂i =
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∫
D
f̂vi dx, or in a matrix form,

[K − (ω2/c2)M ]û�
ω = f̂ω. (9)

A common choice is vj = φj so that K and M are symmetric
positive-definite matrices.

Interestingly, the approximate solution û� is an orthogonal pro-
jection of the exact solution û onto the linear subspace spanned by
φ1, . . . , φN . This projection is called Galerkin’s projection in honor
of the Russian mathematician Boris Galerkin. From Galerkin’s idea
to FEM there is only one small step—one chooses the trial functions
{φi}Ni=1 to be localized piecewise polynomials.

There are two immediate benefits from having this formulation.
First, if we choose φ’s to have a localized support, many of the ele-
ments will not overlap. This means that many integrals for Ki,j and
Mi,j will be zero, and K−(ω2/c2)M will be sparse. Second, since
there are no more second derivatives, we can safely choose piecewise
linear elements. Typically, we discretize the domain with a triangu-
lar mesh, and use piecewise linear elements centered at mesh nodes.
A 2-D illustration is given in Fig. 2.

3. SOURCE LOCALIZATION WITH FEM

The salient point of having finite elements for test and trial functions
is their restricted spatial support. Given a sufficiently fine mesh, if
we measure the amplitude of the pressure oscillations at some loca-
tion x at a frequency ω, we approximately measure the value of the
coefficient û�

ω,i corresponding to the finite element centered around
x.

Let Aω
def
= K − (ω2/c2)M be the matrix of a FEM-discretized

Helmholtz equation. For convenience, let also Gω
def
= A−1

ω . Then

given the source distribution f̂ expanded in the chosen FE basis, the

solution û�
ω is obtained as û�

ω = Gωf̂ω . Let us assume that the
microphones are located at the mesh nodes. This is not unrealistic,
since we know the array geometry by design, and we can always
mesh in such a way that this is true. Denoting the set of indices
corresponding to {ym}Mm=1 by Y , we have

û�
ω[Y] = Gω[Y, :]f̂ω, (10)

where the indexing with Y selects the rows with indices in Y . Since
the sources are spatially sparse, only a small fraction of elements in

f̂ are non-zero—a consequence of the localization of finite elements.

3.1. Point Source Emitting a Sinusoid

Before explaining the general case we examine the simpler case of
a single point source emitting a single tone. Source localization is

now reduced to finding a single non-zero element in f̂ω if the source
is at the mesh node, and a small cluster of nonzeros if it is not.

A simple solution is to find in Gω the column proportional to
û�

ω . Writing Gω = [gω,1, · · · , gω,N ], the solution is obtained as

f̂ = αei, where

i = arg minj‖û�[Y]− 1
‖gj‖2 〈û

�[Y], gj〉gj‖, and

α = 〈û�[Y], 1
‖gi‖gi〉, (11)

and ei is the ith canonical basis vector in R
N .

If the noise is a zero-mean Gaussian noise, (11) is the maximum
likelihood solution, given that the source is at the mesh node.

3.2. Multiple Wideband Point Sources

In the presence of multiple sources, we are no longer trying to find
the best column, but rather the best selection of columns that ex-
plains our measurements.

Additionally, for wideband sources, we have an important ob-
servation: the Helmholtz equation with the assumed source model
(4) is valid for all frequencies ω. We can record u(x, t), and then
compute its Fourier transform to get û(x, ω). We thus obtain the
solution of the Helmholtz equation for many ω’s.

For each of these frequencies we know the matrix Gω and we
have measured some entries in û�

ω . If we choose a discrete set of fre-
quences {ωi}Fi=1, we arrive at the following system of matrix equa-
tions,

[K − (ω2
i /c

2)M ]û�
i = f̂ i, 1 ≤ i ≤ F, (12)

where we only know (measure) a couple of entries in each û�
ωi

. In
the established notation, this means that we are solving the following
system, ⎧⎪⎪⎨

⎪⎪⎩
û�

ω1
[Y] = Gω1 [Y]f̂ω1

...

û�
ωF

[Y] = GωF [Y]f̂ωF
,

but, importantly, in each of the subproblems we are searching for a
sparse solution with the identical sparsity pattern. This is because
we assume that the sources do not move over the observation period.

This problem is in a way complementary to already well investi-
gated sparse recovery algorithms, and many of them can be mechan-
ically extended to our scenario. Studying the performance of these
algorithms is outside of the focus of this paper. For our experiments
section we used a naive extension of the orthogonal matching pur-
suit [7], where we compute the goodness of a column by summing
its goodnesses over all F subproblems. Even if it is suboptimal, this
simple scheme yields interesting results.

3.3. Localizing Pulse Sources with One Microphone

Consider the case where all the waveforms sk(t) are equal, known
and wideband (say the sources emit a pulse). Then something curi-
ous happens. Let there only be one microphone located at y and let
the corresponding element index be n. For a frequency ω we have

û�
ω[n] = Gω[n, :]f̂ , (13)

but now ûω1 [n] is just a scalar, and Gω1 [n, :] is a row vector. As-
sume that sk(t) = δ(t). Since

∫
R
δ(t)e−iωt dt = 1, we know that

the source vector f̂ω = f̂ remains constant for all frequencies. Now
repeat this for many frequencies. This means that we can stack the
observations and the matrix rows to obtain the following equation,⎡

⎢⎣
û�

ω1
[n]

...
û�

ωF
[n]

⎤
⎥⎦ =

⎡
⎢⎣
Gω1 [n, :]

...
GωF [n, :]

⎤
⎥⎦ f̂ . (14)

As soon as the rank of the matrix on the right hand side is at least

N we recover f̂ by an ordinary linear inversion. So, at least in the-
ory, we can recover an arbitrary number of pulse sources using one
microphone and solving a linear system.

Without discussing obvious practical issues with performing this
computation, such as conditioning, we think that the concept is quite
interesting in its own right.
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Fig. 3. Localizing K sources with M microphones: red crosses represent microphones, green circles are true source locations, blue squares

are estimated locations; (a) K = 2, M = 4; (b) K = 3, M = 5; (c) K = 1, M = 3, no line of sight; (d) coarse (estimation) and fine

(simulation) mesh used in experiments; (e) performance of the localization in noise.

4. NUMERICAL EXPERIMENTS

We have validated the theoretical results on a number of numerical
simulations. To ensure a realistic validation, we use different meshes
for the simulation of the field and for the source localization. For
visualization we use a 2-D room, but the developed theory works
both in 2-D and in 3-D.

Acoustics are simulated using a very fine mesh, and this result
is considered to be the true acoustic wavefield. The estimation al-
gorithm is run on a different, considerably coarser mesh. The two
meshes are illustrated in Fig. 3d). As a matter of fact, the estimation
mesh is coarser than what we would use in a real situation.

Fig. 3a) and Fig. 3b) show the localization of 2 and 3 wideband
sources with 4 and 5 microphones. We observe that even with the
relatively large model mismatch due to the coarse mesh, the sources
are correctly located. In Fig. 3c) we show the localization of one
source with three microphones. Unlike what you might expect from
classical methods, the source is successfully located even if there is
no direct channel between it and the array. The room helps us to find
the source.

We have also experimented with adding noise to measurements.
Rate of success in localizing one source with an array of 5 micro-
phones is shown in Fig. 3e) for different noise levels.

5. CONCLUSION

We have proposed a method for acoustic source localization based
on the acoustic wave equation and the finite element method (FEM).
The method exploits the implicit physical modeling provided by
FEM, and the source sparsity through the sparse approximation
methods. We have also shown how the source bandwidth may be

used to better condition the problem and reduce the number of mi-
crophones needed. If the sources emit a pulse, we have a possibility
of estimating their locations using linear inversion. Numerical ex-
periments confirm the effectiveness of the proposed methods, but
additional research is needed to improve the performance in noise
and to assess the sensitivity to imperfect geometry knowledge. On-
going work includes adaptive meshing for increased resolution and
developing sparse recovery algorithms specifically for this scenario.
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