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ABSTRACT
We present a novel methodology for chemical, biological, ra-

diological, or nuclear (CBRN) source localization in urban

environments. Our approach uses only information reported

by CBRN sensors monitoring the environment and thus does

not rely on solving any challenging inverse plume disper-

sion problems. We illustrate and evaluate our technique using

three-dimensional CBRN release simulations.

Index Terms— CBRN detection, source localization,

Markov chains, optimization, sensor placement

1. INTRODUCTION

Concern regarding chemical, biological, radiological, or nu-

clear (CBRN) terrorism is steadily increasing. This is due

to gains in the technological capabilities of producing exist-

ing and potentially new, more lethal CBRN agents and deliv-

ery mechanisms. Urban areas are of particular concern since

these areas tend to have large population densities and are

centers for large-scale commerce and politics [1].

Detecting and responding to CBRN terrorism within ur-

ban areas has its own unique challenges. A typical city tends

to be characterized by irregular geometry, many different

types of surfaces, and highly dynamic population fluxes. All

of these properties make analytic approaches to air flow mod-

eling and agent particle transport difficult. In addition, as

cities contain many centers for commerce and dense gath-

erings of people, accurate release localization and quick

response times are of grand importance.

Existing CBRN source localization approaches [2], [3],

[4] observe CBRN agent concentrations and solve the inverse

problem of tracing dispersion backward in time and space to

the source of the release. Limitations of this methodology

stem from the irregular and dynamic phenomena typically
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found in urban areas. Lack of homogeneity makes modeling

of dispersion, a critical component of the approach, difficult.

In the following, we propose a methodology to CBRN

source localization. This problem is approached solely on dis-

crete time sequences of observations made by CBRN sensors

monitoring the environment through a process of hypothesis

testing. Our methodology is model independent, robust to low

fidelity modeling, and potentially more accurate in scenarios

with highly variable weather conditions. Further, we are able

to characterize error probabilities which provide both perfor-

mance guarantees as well as a conduit to solving the optimal

sensor placement problem.

2. PROBLEM FORMULATION

Consider a chemical, biological, radiological, or nuclear

(CBRN) sensor network deployed in an urban setting. Due

to the nature of plume dispersion and existing CBRN attack

response techniques, extreme precision on the locations of

releases and sensors is not needed. Rather, general locations

(e.g., corner of X St. and Y Ave.) suffice for disaster avoid-

ance and response measures. Using this concept, release

and potential sensor locations can be discretized to conform

to potentially irregular grids. In the following, we assume

N possible CBRN release scenarios represented by the set

L = {L1, . . . , LN} and M possible CBRN sensor locations

represented by the set B = {B1, . . . , BM}. The elements of

L represent at the least a release location but in the follow-

ing each scenario is assumed to have wind conditions (e.g.,

wind originating from the N with mean velocity of 3 m/s)

associated with it. Wind is a critical component of a release

scenario as it is the primary mode of particulate transport.

Let yi denote the vector of sensor observations made by

a sensor at location Bi. Each sensor outputs a CBRN agent

concentration estimation and potentially local wind observa-

tions. Since different concentrations result in different levels

of casualties, counter measures, and responses, observed con-

centrations can naturally be discretized to concentration lev-

els (e.g., [0, x], [x, yLCT50],etc., where yLCT50 represents a

concentration that would lead to an accumulated dosage that

produces a 50% chance of survival.) Each yi is mapped to
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a symbol in the finite alphabet Σ = {σ1, . . . , σ|Σ|}. A se-

quence of n sensor observations at location Bi is denoted

yi,n = (yi
1, . . . ,y

i
n). It is assumed throughout the sequel

that an initial state of y0 is known a priori.

A CBRN release scenario Lj is associated with a fam-

ily of parameterizations Ωj which correspond to variability

in weather conditions, amount of agent released, time of day,

and time since attack. While not under an attack scenario,

a sensor’s agent concentration approximation fluctuations are

attributed to measurement noise. Accordingly, when there is

no CBRN attack, the sensor’s concentration readings can be

assumed to be independent and identically distributed (iid).

Under a release scenario, however, the agent disperses

gradually, resulting in concentration observations that change

much slower than a sensor’s sampling rate. That is, if a certain

concentration level is observed by a sensor at a certain time

step, one can expect to see a similar concentration observa-

tion in the next time step. Accordingly we model concentra-

tion level at a sensor when there is an attack as a first-order

Markov chain.

Allow M2(Σ × Σ) to denote the set of all discrete time

Markov transition probability matrices on the state alphabet

Σ = {σ1, . . . , σ|Σ|}. For each sensor location, release sce-

nario pair (Bi, Lj), associate a series of first-order Markov

transition probability matrices Πθj , ∀θj ∈ Ωj , defined as

Πi
θj =

{
πi
θj (σv, σu)

}|Σ|

u,v=1
, (1)

where πi
θj
(σv, σu) = P[yr+1 = σu|yr = σv].

Under the assumption of a Markov source, the empirical

distribution of a sequence yn = (y1, . . . ,yn) of sensor ob-

servations takes the form Qyn = {qyn(σv, σu)}|Σ|
u,v=1, where

qyn(σv, σu) =
1

n

n∑
i=1

1{yi−1 = σv,yi = σu}. (2)

The conditional empirical probability of transitioning from

state σv to σu, as derived from the sequence yn, is

qyn(σu|σv) =
qyn(σv, σu)

qyn(σv)
,

where qyn(σv) =
∑|Σ|

u=1 qyn(σv, σu). A convex relative en-

tropy measure for Markov chains against a Markov source Π
is given by [6]

I2(Q|Π) =

n∑
v=1

q(σv)H2(q(·|σv)|π(σv, ·))

where H2(q(·|σv)|π(σv, ·)) =
∑|Σ|

u=1 q(σu|σv) log
q(σu|σv)
π(σv,σu)

.

Consider the subproblem of using the sensor readings

from a sensor at location Bk to determine if the CBRN re-

lease corresponds to scenario Li or Lj . The Generalized

Likelihood Ratio Test (GLRT) compares the normalized gen-

eralized log-likelihood ratio

Xijk(y
k,n) =

1

n
log

supθi∈Ωi
P k
θi
(yk,n)

supθj∈Ωj
P k
θj
(ykn)

to a threshold λ and declares Li to be the release scenario

whenever

yk,n ∈ S GLRT
ijk,n = {yn|Xijk(y

n) ≥ λ}, (3)

and Lj otherwise. Selection of the value for λ in (3) is con-

ducted through evaluation of decision error probabilities.

The GLRT described in (3) can make two types of error.

Namely, the decision test can declare Lj to be the release sce-

nario when in actuality the release scenario was Li and vice

versa. The probabilities of these errors are represented as,

αGLRT
ijk,n (θj) = Pθj [y

k,n ∈ S GLRT
ijk,n ],

βGLRT
ijk,n (θi) = Pθi [y

k,n /∈ S )GLRT
ijk,n ],

where Pθ is a probability evaluated assuming that yk,n is

drawn from P k
θ (·).

Certainly some values of λ in (3) are better than others. To

evaluate the GLRT’s performance, we will use the generalized

Neyman-Pearson criterion.

Definition 1 The decision rule {Sijk,n} is generalized
Neyman-Pearson (GNP) optimal if it satisfies

lim sup
n→∞

1

n
logαS

ijk,n(θj) < λ, ∀θj ∈ Ωj

and maximizes − lim supn→∞
1
n log βS

ijk,n(θi) uniformly
∀θi ∈ Ωi.

The following theorem, whose proof has been omitted

for brevity, establishes the optimality of the GLRT in the

Neyman-Pearson sense.

Theorem 1 The GLRT with a threshold λ is asymptotically
optimal under the GNP criterion if and only if

inf
Q∈Cijk

I2(Q|Π) ≥ inf
Q∈Aijk

I2(Q|Π)∀θi ∈ Ωi (4)

where Aijk = {Q| infθj I2(Q|Πθj ) < λ} and

Cijk = {Q| inf
θj∈Ωj

I2(Q|Πθi)−

inf
θi∈Ωi

I2(Q|Πθi) ≤ inf
θj∈Ωj

I2(Q|Πθj )}.

Furthermore, assuming (4) is satisfied

lim sup
n→∞

1

n
logαGLRT

ijk,n (θj) ≤ −λ,

for all θj ∈ Ωj , and

lim sup
n→∞

1

n
log βGLRT

ijk,n (θi) ≤ − inf
Q∈Aijk

I2(Q|Π),

for all θi ∈ Ωi.
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Now, in the event that the GLRT is not asymptotically

optimal (i.e., condition (4) does not hold,) information on the

error probabilities can still be gleamed. Define the set Dijk =
{Q| infθj I2(Q|Πθj )− infθi I2(Q|Πθi) < λ}. Note,

yk,n ∈ S GLRT
ijk,n ⇔ Qyk,n /∈ Dijk.

So, by Theorem 1, we have

lim sup
n→∞

1

n
logαGLRT

ijk,n (θj) ≤ − inf
Q/∈Dijk

I2(Q|Πθj ), ∀θj ∈ Ωj

lim sup
n→∞

1

n
log βGLRT

ijk,n (θi) ≤ − inf
Q∈Dijk

I2(Q|Πθi), ∀θi ∈ Ωi.

We can therefore determine the asymptotic bound on the nat-

ural logarithm of βGLRT
ijk,n for any θi ∈ Ωi by the nonlinear

program

Zijk(λ, θi) = minQ I2(Q|Πθi)
st g(Q; Ωi,Ωj) ≤ λ

Aq ≤ 0,
(5)

where

g(Q; Ωi,Ωj) = min
θj∈Ωj

I2(Q|Πθj )− min
θi∈Ωi

I2(Q|Πθi).

The constraints that Q be shift invariant and represent valid

transition probabilities for a Markov chain are linear and are

represented by the system of linear inequalities, where q is a

“vectorization” of Q.

Using (5), Zijk(λ) = minθi∈Ωi
Zijk(λ, θi) is the expo-

nent of the worst case probability of the GLRT, using informa-

tion from sensor k, declaring the release scenario is Li when

the actual release scenario is Lj . Likewise, Zjik(λ) is the ex-

ponent of the worst case probability of the GLRT declaring

release scenario Lj when the actual release scenario is Li.

Since Zijk(·) is a nonincreasing, non-negative function,

with limλ→∞ Zijk(λ) = 0, there exists λ∗
ijk ≥ 0 such that

Zijk(λ
∗
ijk) = λ∗

ijk. Allow

dijk = max{λ∗
ijk, λ

∗
jik} (6)

and let P
(e)
ijk,n represent the GLRT’s maximum probability of

error. The above leads to the following proposition.

Proposition 1 Suppose the sensor at Bk uses the GLRT and
compares Xijk(y

k,n) to dijk. Then, the maximum probability
of error satisfies

lim sup
n→∞

1

n
logP

(e)
ijk,n ≤ −dijk.

So far all of the results presented for the source localiza-

tion problem have concerned the binary GLRT in (3) when

the real problem is to select a location that appears within the

scenarios in L . One approach is to make a series of decisions

of the form (3) until a single release location has been chosen.

Assume without loss of generality that the sensors are

placed at locations B1, . . . , BK . Using the observations from

sensor Bk∗ , where k∗ = argmaxkd12k, a decision is made

between scenarios L1 and L2 via the GLRT with threshold

d12k∗ , as established in (3) and (6). This scenario is then com-

pared with L3 by the GLRT, and so on, until N − 1 decisions

have been made and only one scenario from L is accepted.

The location associated with this selected scenario is declared

the CBRN source location.

3. SENSOR PLACEMENT

Now that performance guarantees have been established for

each sensor location in B, the question of where to place K <
M sensors can be addressed. Using the bound in Proposition

1, we ca select the K elements of B such that the worst case

error when deciding between any two release scenarios in L
is minimized. This is done, as in [5], via a mixed integer linear

program (MILP) which, although shown to be NP-hard, can

be solved efficiently for large sets B and L using a special

purpose algorithm [7].

4. NUMERICAL EXPERIMENTATION

To demonstrate the performance of the sensor placement

approach of Section 3 and the CBRN source localization

of Section 2, we simulated several release scenarios in the

Los Alamos developed Quick Urban & Industrial Complex

(QUIC) Dispersion Modeling System [8]. QUIC first solves

the fluid dynamics problem of determining lcoal wind ed-

dies throughout a modeled three-dimensional, outdoor setting

using the methods of Röckle [9]. Using the fluid flow so-

lution, QUIC simulates the travel of CBRN particulates via

Lagrangian random walk. Previously, the QUIC codes have

been tested and validated for real-world situations [8].
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Fig. 1. Model with optimal sensor placement solution.

2615



In the following demonstrations, a three-dimensional

model with several large obstructions (i.e., buildings in an

urban setting) was modeled in QUIC. CBRN point releases

originating from three release locations were simulated with

wind originating from NNW, N, or NNE. 225 potential sensor

locations are considered on an evenly spaced grid near ground

level in the model. Figure 1 illustrates a cross section of the

model with the locations of the obstructions (larger shapes)

and releases (“x”s).

The probability laws for each combination of wind direc-

tion, release location, and sensor location are determined by

Monte Carlo simulation. First sensor concentration observa-

tions are encoded into binary outputs indicating the presence

of non-nil concentration. Considering the binary nature of the

sensor readings, sensor measurement noise is accomplished

via Bernoulli trials which result in flipping sensor observa-

tions. This sensor noise model was parameterized to result

in one sensor observation per CBRN event to be erroneous

on average. The resulting noisy sensor readings provide a

wealth of observations from which probability laws can be es-

tablished, allowing for solution of (5) and the determination

of the dijk in (6). Analysis of the worst case probability of er-

ror by the number of sensors deployed revealed no improve-

ment once seven sensors are utilized. The optimal placement

solution is depicted in Figure 1 as the small circles.

A test set is constructed for each release location by first

selecting a wind direction according to a “wind rose” which

describes the likelihood of each wind direction. Then, fol-

lowing the same procedure as the simulations from which the

probability laws were derived, test sensor observations are

generated.

The ability of the localization methodology was also eval-

uated on each test scenario. The confusion matrix is presented

in Table 1. The release locations are referred to as “L” for the

left release location, “M” for the middle release location, and

“R” for the right release location. The row corresponding to

a particular location depicts the percentage of test scenarios

determined to originate from each possible location. In total,

all test locations were placed correctly with greater than 90%

accuracy.

L M R

L 0.91 0.08 0.01

M 0.01 0.95 0.04

R 0.00 0.03 0.97

Table 1. Confusion matrix for localization methodology.

5. CONCLUSION

We have presented an approach for CBRN source localization

through a sequential GLRT paradigm is used to determine

where the CBRN event started and demonstrated promising

performance in a numerical experiment. A clear future di-

rection for work is in examining alternatives to the sequential

GLRT, such as a maximum likelihood decision test in which

all sensor observations are used in unison instead of sequen-

tially.
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