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ABSTRACT
In this work, we present some asymptotic results on the
maximum likelihood multi-rank processor for passive wave-
front curvature ranging systems using large-scale distributed
arrays. We assume that the operation environment for the dis-
tributed arrays is subject to a spatial coherence loss. Under an
exponential coherence model, analytical expressions for the
multi-rank combiners are derived. The results provide a sim-
ple guideline for choosing inter-module spacing according to
the spatial coherence length for formulating multi-rank mode
filters and weights used in the combiner. The general frame-
work and the numerical procedures of designing a multi-rank
combiner can be applied to other coherence models.

Index Terms— Asymptotic Results, Large-Scale Array
of Arrays, Passive Source Localization

1. INTRODUCTION

In many passive sensing systems [1, 2] used for surveillance
and environmental monitoring, a large number of distributed
arrays or sub-arrays are used to form a network of arrays for
detection, ranging and tracking on the sources of interest. The
collection of distributed arrays forms a large-aperture com-
posite array system or network, which enables advanced sig-
nal processing techniques to deliver high resolution and ro-
bust solutions to many challenging problems. However, when
a large aperture array is deployed for underwater acoustic
applications, the signal wavefronts may experience different
levels of coherence loss spatially [3, 4, 5, 6]. In [7], we de-
veloped a multi-rank maximum likelihood solution to passive
ranging using wavefront curvature (WFC) sensed by an array
of three modular arrays in environments subject to signal co-
herence loss. The key components in the multi-rank processor
are a bank of multi-mode eigen-filters and a combiner. Built
from the knowledge of spatial coherence model, such compo-
nents further process the beamformed outputs from small-size
modular arrays for passive ranging. In certain applications,
there are a large number of distributed sub-arrays made avail-
able for WFC ranging. Under environments subject to spa-
tial coherence losses, the sub-arrays can be defined as a set

∗THIS WORK HAS BEEN PARTIALLY SUPPORTED BY THE ONR
UNDER GRANT N00014-12-1-0215 AND THE NUWC.

of receiving elements with high levels of spatial coherence.
In operating a large-scale multi-module array system, there
comes a need for a fast design guideline on how to choose
the inter-module spacings, the multi-rank filters and the corre-
sponding multi-rank combining coefficients, given the spatial
coherence model, without resorting to the real-time large-size
eigen-analysis. This work extends our previous research on
passive WFC ranging using a towed arrays with three spa-
tially separated modules [7] to a large-scale distributed sens-
ing system (see Fig.1). We develop some interesting asymp-
totic results for a multi-rank processor in a general passive
WFC ranging system equipped with a large number of dis-
tributed hydrophone modules.

Fig. 1. A schematic picture of a large-scale passive wavefront
curvature ranging system.

2. DATA MODEL AND SPATIAL COHERENCE

In our analysis, it is assumed that each array module contains
a fixed Nt number of hydrophones, while the spacing between
adjacent array modules is a fixed constant Lt. For a large-
scale array consisting of L array modules, the total data from
all the hydrophones can be concatenated in a long N = NtL
dimensional vector. For a frequency f under consideration,
the received data can be modelled as,

d(t, f) =

⎡
⎢⎢⎣

d1(t, f)
...

dL(t, f)

⎤
⎥⎥⎦ = σs · Sst(r, θ, f) · Iρ(t) + n(t).

(1)
Here, the L × 1 signal wavefront appearing on L sub-
arrays, Iρ(t), is assumed to be complex Gaussian distrib-
uted with zero-mean and a spatial coherence matrix Rρ =
E

{
Iρ(t)IH

ρ (t)
}
. The L module sub-arrays’ steering vec-

tors (k = 1, 2, . . . , L),

sk(r, θ, f) =

⎡
⎣ exp

{
−j2πf

‖pk,n−ps(r,θ)‖
c

}

↓ n = 1, 2, . . . , Nt

⎤
⎦

Nt×1

,
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form the whole array’s steering matrix as follows,

Sst(r, θ, f)=

⎡
⎢⎢⎢⎣

s1(r, θ, f) 0 · · · 0
0 s2(r, θ, f) · · · 0
...

...
. . .

...
0 0 · · · sL(r, θ, f)

⎤
⎥⎥⎥⎦

N×L

In a 2-D coordinate, the source position vector, ps(r, θ) =
[ r cosθ r sinθ ]T is parameterized by source’s range r and
bearing θ; the position vector pk,n contains a module-array’s
element position; and c is the sound speed.

As will become clear later in section 4, the spatial coher-
ence matrix Rρ plays an important role in analytically for-
mulating the multi-rank solutions (coherent or non-coherent)
to passive ranging problem. Let us now focus on the eigen-
analysis of Rρ. Using a commonly adopted exponential
model for spatial coherence in underwater environment
[3, 4, 6], the coherence matrix among all L array mod-
ules (Lt-spaced) can be found having the Toeplitz form of,

Rρ =

⎡
⎢⎢⎢⎢⎣

1 ρ · · · ρ(L−1)2

ρ 1 · · · ρ(L−2)2

...
...

. . .
...

ρ(L−1)2 ρ(L−2)2 · · · 1

⎤
⎥⎥⎥⎥⎦

= Toeplitz([1, ρ, ρ4, . . . , ρ(L−1)2 ]),

(2)

where the parameter ρ = exp{−2(Lt/Lcoh)2} is a function
of Lcoh the coherence length of the wavefield, and Lt the
spacing between centers of adjacent array modules. Recall-
ing the Wiener Khichine Theorem that connects a random se-
quence’s auto-correlation sequence rρ(k) to its power spectral
density (PSD) Pρ(ν) through a Fourier transform pair,

rρ(k) =
∫ +1/2

−1/2

Pρ(ν)ej2πνkdν,

we can rewrite the coherence matrix in eq. (2) precisely as,

Rρ =
∫ +1/2

−1/2

e(ν)Pρ(ν)eH(ν)dν.

Here the vector e(ν) =
[
1 ej2πν · · · ej2π(L−1)ν

]T

is
simply the well known discrete-time Fourier transform vector.

In a large-scale distributed array system, where the num-
ber of module L is large enough, we can approximate the
eigen-decomposition of the coherence matrix using the fol-
lowing asymptotic spectral decomposition,

Rρ =
L∑

i=1

λivi vH

i ≈ 1
L

L∑
i=1

Pρ(νi)e(νi) eH(νi). (3)

For large L, the eigen-mode vi ≈ 1√
L
e(νi) becomes a nor-

malized DFT vector and the eigenvalue λi ≈ Pρ(νi) be-
comes the spatial PSD, each being evaluated at the DFT bin

νi = (i − 1)/L, (i = 1, 2, . . . , L). The importance of the
results is that given a pre-selected spatial coherence model
and the system parameters of a large-scale array network, the
asymptotic eigen-analysis can be pre-calculated either ana-
lytically or numerically, and used for building the multi-rank
processor for passive WFC ranging application. It can be
seen in the sequel, the proposed general framework of using
these simple asymptotic eigen-results in designing a multi-
rank processor for a large-scale array network applies to any
spatial coherence model of one’s choice.

3. EFFECTIVENESS OF ASYMPTOTIC RESULTS

To illustrate the idea and the effectiveness of resulting solu-
tion, let us focus back on to the commonly adopted spatial
coherence model, the exponential module used in the matrix
Rρ of eq. (2). In this case, the spatial PSD takes a Gaussian
shape. Specifically, defining σ2

ρ = L2
coh/(2L2

t ), we can come
up with the analytical result for the spatial PSD,

Pρ(ν) =
√

πσρ exp−(πσρν)2,

under the condition of no significant spectral aliasing (due to
Lt-spacing of L module arrays). Using the 3σ rule (a 99.7%
CI), this translates into a requirement on the inter-module
spacing, which is Lt ≤ π

6 Lcoh ≈ 0.5236Lcoh. Alternatively,
a 2σ (a 95.5% CI) rule translates into a requirement on the
inter-module spacing, which is Lt ≤ π

4 Lcoh ≈ 0.7854Lcoh.
In the Fig.2 and Fig.3, we illustrate the effectiveness of the

asymptotic results, for different choices of inter-module spac-
ings (Lt = 0.25Lcoh and Lt = 0.5Lcoh), in approximating
the eigen-modes of a distributed array system with L = 20
and L = 10 modular arrays, respectively. One can see that for
a smooth Gaussian-shaped PSD, the approximation in eq.(3)
holds well even for a reasonable value of L = 10.

4. MULTI-RANK PROCESSORS

In this section, we show that incorporating the asymptotic re-
sults on the spatial coherence matrix leads to a conceptually
simple multi-stage procedure for passive WFC ranging. Un-
der Gaussian assumption on the signal wavefront impinging
on array in an additive white Gaussian noise field, n(t) ∼
CN (0, σ2

nIN×N ), all the information about the source of in-
terest (bearing and range) are contained in the second-order
data statistics. The correlation matrix for data in (1) becomes,

Rd = σ2
s · Sst(r, θ, f) · Rρ · SH

st(r, θ, f) + σ2
nIN×N

Extending the results in [7] to an array system with L identical
modular arrays, the maximum likelihood estimate for source’s
range and bearing can be found by scanning for the maxi-
mum of the objective function JML(r, θ) and its asymptotic
approximation, as follows,

[
r̂

θ̂

]
= arg max

r,θ
JML(r, θ), (4)
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(b) inter-module spacing Lt = 0.5Lcoh.

Fig. 2. Effectiveness of the asymptotic results in approximat-
ing the eigen-results in a 20-module array system. Parame-
ters in use: number of modular arrays L = 20, in (a) inter-
module spacing Lt = 0.25Lcoh, in (b) inter-module spacing
Lt = 0.5Lcoh.

with

JML(r, θ) =
L∑

i=1

λi ηSNR

1 + λi ηSNR
|vH

i y(t)|2

≈
L∑

i=1

Pρ(νi) ηSNR

1 + Pρ(νi) ηSNR
|eH(νi)y(t)|2 .

(5)

Here, SNR is defined as ηSNR = σ2
s/σ2

n; the L × 1 vector
y(t) = y(t; r, θ, f) is a collection of beamformed data from
all modular arrays. Specifically, we have

y(t; r, θ, f) = SH

st(r, θ, f)d(t) =

⎡
⎢⎢⎢⎣

sH
1 (r, θ, f) · d1(t)

...

sH

L(r, θ, f) · dL(t)

⎤
⎥⎥⎥⎦ ,
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(a) inter-module spacing Lt = 0.25Lcoh.
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(b) inter-module spacing Lt = 0.5Lcoh.

Fig. 3. Effectiveness of the asymptotic results in approximat-
ing the eigen-results in a 10-module array system. Parame-
ters in use: number of modular arrays L = 10, in (a) inter-
module spacing Lt = 0.25Lcoh, in (b) inter-module spacing
Lt = 0.5Lcoh.

with yk(t) = yk(t; r, θ, f) = sH

k (r, θ, f)dk(t, f) being the
output from each of the sub-array processing module.

4.1. Interpretation on the multi-rank processor based on
asymptotic results

From eqs.(4) and (5), one can see that the multi-rank MLE
solution to passive WFC ranging is essentially a two stage
processing. In the first stage of processing done at the
distributed modular array level, each array conducts a far-
field beamforming operation using its own steering vector
sk(r, θ, f) on their available data dk(t), respectively, in an ef-
fort to search and focus on the source of interest. This opera-
tion results in L parallel channels of beamformed data streams
yk(t) = sH

k (r, θ, f)dk(t), k = 1, 2, . . . , L. During the second
stage of processing, we first translate the L-channel beam-
formed data vector y(t) =

[
y1(t) · · · yL(t)

]T
into
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its L-point spatial-spectral domain representations, y(νk) =
vH

k y(t), (k = 1, 2, . . . , L). We then carry out the multi-
rank combining using a weighted combination of all L
spatial-spectral modes to build up the ML objective func-
tion, JML(r, θ), for passive ranging. Therefore, the peak-
track from the above objective function JML(r, θ) over a
running time duration results in the range-track for the source
of interest. Note an interesting fact that the mode vectors,
vk’s , which are used to combine all distributed beamform-
ers’ outputs in L different ways, are fixed once the total
module number L is known. However, the weighting co-
efficient, Pρ(νk)ηSNR/(1 + Pρ(νk)ηSNR), depends on the
spatial correlation model in use. For applications where a
prior spatial PSD of coherence model, Pρ(νk), is approxi-
mately known, one can easily adopt a reduce-rank scheme
that only utilize certain significant spatial-spectral modes of
the spatial correlation function to combine beamformed data,
without much performance loss. For adaptive applications,
where Pρ(νk) has to be estimated from the cross-spectral
density matrix (CSDM) of modular array’s beamformed out-
puts. Given very limited amount of stationary available data,
reduced-rank scheme provides a feasible solution for balanc-
ing the performance and solution stability in WFC ranging.

As pointed out earlier, the general numerical procedures
of pre-calculating the parameters used in the multi-rank
processor applies to any coherence model of one’s choice,
no matter what are the choice of Lt and Lcoh, if or not alias-
ing is present (due to the choice of Lt with respect to the
Lcoh). However, the performance of the passive ranging
system may vary for different levels of spatial coherence.

For an ideal environment with perfect coherence, Lt �
Lcoh always holds. We have Rρ = 1 · 1T and P (ν) = δ(ν).
Hence, the only non-zero coefficient in the PSD is Pρ(ν1) =
1, resulting in a rank-1 solution,

JML(r, θ) = |eH(ν1)y(t)|2

=

∣∣∣∣∣
L∑

i=1

yk(t, r, θ)

∣∣∣∣∣
2

=

∣∣∣∣∣
L∑

i=1

sH

k (r, θ)dk(t)

∣∣∣∣∣
2

.

In this case, the solution is simply reduced to a coherent
beamforming solution across the whole array (a rank-1
matched filter solution).

On the other extreme, when there is no coherence existing,
equivalently Lt � Lcoh, we have Rρ = I and Pρ(ν) = 1.
Hence, Pρ(νi) = 1, i = 1, 2, . . . , L, resulting in

JML(r, θ) ∝
L∑

i=1

| eH(νi)y(t) |2

=

∥∥∥∥∥∥∥

⎡
⎢⎣

eH(ν1)
...

eH(νL)

⎤
⎥⎦y(t, r, θ)

∥∥∥∥∥∥∥

2

∝ ‖y(t, r, θ)‖2 =
L∑

i=1

|sH

k (r, θ)dk(t)|2 ,

which is simply a non-coherent solution by combining all
modular arrays’ beamforming output powers.

In practice, for effective and unambiguous passive WFC
ranging, we need to use a broadband approach, where many
frequency bins of reasonable coherence levels should be uti-
lized. Therefore, the framework developed here can be fur-
ther extended to include frequency parameter into the spatial
coherence matrix.

5. CONCLUDING REMARKS

We develop in this work some asymptotic results suitable for
multi-rank processing using a large-scale distributed arrays
for passive WFC ranging system operating in environments
subject to spatial coherence loss. Under a Gaussian assump-
tion on data model, our solution yields a two-stage process-
ing scheme, a module level beamforming followed by a spa-
tial combining utilizing the spatial coherence existing in the
distributed beamformers’ outputs. Using an exponential co-
herence model, our analytical solution provides a simple way
of choosing inter-module spacing, mode filters and combina-
tion coefficients used in the multi-rank processor to harvest
possible spatial coherence. The general framework based on
asymptotic relation should apply to different coherence mod-
els encountered in practice, as long as the distributed system
is large enough.
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