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ABSTRACT

In this work, we present some asymptotic results on the
maximum likelihood multi-rank processor for passive wave-
front curvature ranging systems using large-scale distributed
arrays. We assume that the operation environment for the dis-
tributed arrays is subject to a spatial coherence loss. Under an
exponential coherence model, analytical expressions for the
multi-rank combiners are derived. The results provide a sim-
ple guideline for choosing inter-module spacing according to
the spatial coherence length for formulating multi-rank mode
filters and weights used in the combiner. The general frame-
work and the numerical procedures of designing a multi-rank
combiner can be applied to other coherence models.

Index Terms— Asymptotic Results, Large-Scale Array
of Arrays, Passive Source Localization

1. INTRODUCTION

In many passive sensing systems [1, 2] used for surveillance
and environmental monitoring, a large number of distributed
arrays or sub-arrays are used to form a network of arrays for
detection, ranging and tracking on the sources of interest. The
collection of distributed arrays forms a large-aperture com-
posite array system or network, which enables advanced sig-
nal processing techniques to deliver high resolution and ro-
bust solutions to many challenging problems. However, when
a large aperture array is deployed for underwater acoustic
applications, the signal wavefronts may experience different
levels of coherence loss spatially [3, 4, 5, 6]. In [7], we de-
veloped a multi-rank maximum likelihood solution to passive
ranging using wavefront curvature (WFC) sensed by an array
of three modular arrays in environments subject to signal co-
herence loss. The key components in the multi-rank processor
are a bank of multi-mode eigen-filters and a combiner. Built
from the knowledge of spatial coherence model, such compo-
nents further process the beamformed outputs from small-size
modular arrays for passive ranging. In certain applications,
there are a large number of distributed sub-arrays made avail-
able for WFC ranging. Under environments subject to spa-
tial coherence losses, the sub-arrays can be defined as a set
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of receiving elements with high levels of spatial coherence.
In operating a large-scale multi-module array system, there
comes a need for a fast design guideline on how to choose
the inter-module spacings, the multi-rank filters and the corre-
sponding multi-rank combining coefficients, given the spatial
coherence model, without resorting to the real-time large-size
eigen-analysis. This work extends our previous research on
passive WFC ranging using a towed arrays with three spa-
tially separated modules [7] to a large-scale distributed sens-
ing system (see Fig.1). We develop some interesting asymp-
totic results for a multi-rank processor in a general passive
WEFC ranging system equipped with a large number of dis-
tributed hydrophone modules.

Fig. 1. A schematic picture of a large-scale passive wavefront
curvature ranging system.

2. DATA MODEL AND SPATIAL COHERENCE

In our analysis, it is assumed that each array module contains
a fixed N; number of hydrophones, while the spacing between
adjacent array modules is a fixed constant L,. For a large-
scale array consisting of L array modules, the total data from
all the hydrophones can be concatenated in a long N = N, L
dimensional vector. For a frequency f under consideration,
the received data can be modelled as,

di(t, f)

d(t, f) = =05 Sa(r, 0, f) - 1,(t) +n(t).

dL (t7 f)
ey
Here, the L x 1 signal wavefront appearing on L sub-
arrays, I,,(t), is assumed to be complex Gaussian distrib-
uted with zero-mean and a spatial coherence matrix R, =
E{Ip(t)Iff(t)}. The L module sub-arrays’ steering vec-
tors (k =1,2,...,L),

exp {7327.[.](‘ Hpk,n*fs (TG)H }
Sk (’I", 97 f) = )

Ln:l,?,...,Nt Nyx1
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form the whole array’s steering matrix as follows,

s1(r,0, f) 0 0

0 .0, 0

T S e S
0 0 SL(”',Q,f) NxL

In a 2-D coordinate, the source position vector, ps(r,0) =
[rcosf rsind]T is parameterized by source’s range r and
bearing 0; the position vector py, , contains a module-array’s
element position; and c is the sound speed.

As will become clear later in section 4, the spatial coher-
ence matrix R, plays an important role in analytically for-
mulating the multi-rank solutions (coherent or non-coherent)
to passive ranging problem. Let us now focus on the eigen-
analysis of R,. Using a commonly adopted exponential
model for spatial coherence in underwater environment
[3, 4, 6], the coherence matrix among all L array mod-
ules (L;-spaced) can be found having the Toeplitz form of,

1 p p(L—1)2
2
P 1 p(L—Q)
Rp = . . .
. . . : (2)
2 2
p(L_l) p(L_Q) [N 1

= Toeplitz([1,p, p*, ..., p*= V7)),

where the parameter p = exp{—2(L;/Lcon)?} is a function
of L..n the coherence length of the wavefield, and L; the
spacing between centers of adjacent array modules. Recall-
ing the Wiener Khichine Theorem that connects a random se-
quence’s auto-correlation sequence r, (k) to its power spectral
density (PSD) P,(v) through a Fourier transform pair,

+1/2 _
Tp(k) :/1/2 Pp(y)eﬂwukdy,

we can rewrite the coherence matrix in eq. (2) precisely as,
+1/2

e(v)P,(v)e" (v)dv.
~1/2

R, =

Here the vector e(v) = [1 e/?™ e/2m(L=1r " s
simply the well known discrete-time Fourier transform vector.

In a large-scale distributed array system, where the num-
ber of module L is large enough, we can approximate the
eigen-decomposition of the coherence matrix using the fol-
lowing asymptotic spectral decomposition,

L L
1
R,=> Aviv/~ 7 > P(vie(vi)e” (v). ()
i=1 i=1

For large L, the eigen-mode v; ~ %e(ui) becomes a nor-
malized DFT vector and the eigenvalue )\, ~ P,(v;) be-

comes the spatial PSD, each being evaluated at the DFT bin
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v, = (i —1)/L,(i = 1,2,...,L). The importance of the
results is that given a pre-selected spatial coherence model
and the system parameters of a large-scale array network, the
asymptotic eigen-analysis can be pre-calculated either ana-
lytically or numerically, and used for building the multi-rank
processor for passive WFC ranging application. It can be
seen in the sequel, the proposed general framework of using
these simple asymptotic eigen-results in designing a multi-
rank processor for a large-scale array network applies to any
spatial coherence model of one’s choice.

3. EFFECTIVENESS OF ASYMPTOTIC RESULTS

To illustrate the idea and the effectiveness of resulting solu-
tion, let us focus back on to the commonly adopted spatial
coherence model, the exponential module used in the matrix
R, of eq. (2). In this case, the spatial PSD takes a Gaussian
shape. Specifically, defining o2 = L?,,, /(2L?), we can come
up with the analytical result for the spatial PSD,

P,(v) = Vmo,exp —(mo,v)?,

under the condition of no significant spectral aliasing (due to
L-spacing of L module arrays). Using the 3¢ rule (a 99.7%
CI), this translates into a requirement on the inter-module
spacing, which is Ly < & Lcop & 0.5236Lcop. Alternatively,
a 20 (a 95.5% CI) rule translates into a requirement on the
inter-module spacing, which is Ly < 5 Leop = 0.7854 Lcop.

In the Fig.2 and Fig.3, we illustrate the effectiveness of the
asymptotic results, for different choices of inter-module spac-
ings (Ly = 0.25L.,p and Ly = 0.5L.,p), in approximating
the eigen-modes of a distributed array system with L = 20
and L = 10 modular arrays, respectively. One can see that for
a smooth Gaussian-shaped PSD, the approximation in eq.(3)
holds well even for a reasonable value of L = 10.

4. MULTI-RANK PROCESSORS

In this section, we show that incorporating the asymptotic re-
sults on the spatial coherence matrix leads to a conceptually
simple multi-stage procedure for passive WFC ranging. Un-
der Gaussian assumption on the signal wavefront impinging
on array in an additive white Gaussian noise field, n(t) ~
CN (0,021« n), all the information about the source of in-
terest (bearing and range) are contained in the second-order
data statistics. The correlation matrix for data in (1) becomes,

Rd :Ug‘sst(rvaaf)'RP'S;(rvgvf)+072LINXN

Extending the results in [7] to an array system with L identical
modular arrays, the maximum likelihood estimate for source’s
range and bearing can be found by scanning for the maxi-
mum of the objective function Jy/,(r,6) and its asymptotic
approximation, as follows,

|

“)

} = argmax Jrip(r,0),

>
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Fig. 2. Effectiveness of the asymptotic results in approximat-
ing the eigen-results in a 20-module array system. Parame-
ters in use: number of modular arrays L = 20, in (a) inter-
module spacing L; = 0.25L.,p, in (b) inter-module spacing
Ly = 0.5L¢op.

with
L
Tap(r,0) = Z _AiNSNR__ vy (t))?
, i=1 1+ Xinsnr )
L
Py(vi)nsNr | 2
~ — e (v)y(t)|".

i=1

Here, SNR is defined as nsxgr = 02/02; the L x 1 vector

y(t) = y(t;7, 0, f) is a collection of beamformed data from
all modular arrays. Specifically, we have

st (1,0, f) - da(t)
st(r,0, f)d(t) = : ;

sz.(r,0,f) - di(t)

y(t:r. 0, f) =
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Fig. 3. Effectiveness of the asymptotic results in approximat-
ing the eigen-results in a 10-module array system. Parame-
ters in use: number of modular arrays L = 10, in (a) inter-
module spacing L; = 0.25L.,p, in (b) inter-module spacing
L; =0.5Lcop.

with y () = yr(t;7,0, f) = si(r,0, f)dk(t, f) being the
output from each of the sub-array processing module.

4.1. Interpretation on the multi-rank processor based on
asymptotic results

From eqs.(4) and (5), one can see that the multi-rank MLE
solution to passive WFC ranging is essentially a two stage
processing. In the first stage of processing done at the
distributed modular array level, each array conducts a far-
field beamforming operation using its own steering vector
sk(r, 0, f) on their available data d (), respectively, in an ef-
fort to search and focus on the source of interest. This opera-
tion results in L parallel channels of beamformed data streams
yi(t) =s;(r,0, f)dk(t),k = 1,2, ..., L. During the second
stage of processing, we first translate the L-channel beam-
formed data vector y(t) = [ yi(t) yr(t) ]T into



its L-point spatial-spectral domain representations, y(v;) =
viy(t), (k = 1,2,...,L). We then carry out the multi-
rank combining using a weighted combination of all L
spatial-spectral modes to build up the ML objective func-
tion, Jysp(r,0), for passive ranging. Therefore, the peak-
track from the above objective function Jysp,(r,0) over a
running time duration results in the range-track for the source
of interest. Note an interesting fact that the mode vectors,
vi’s , which are used to combine all distributed beamform-
ers’ outputs in L different ways, are fixed once the total
module number L is known. However, the weighting co-
efficient, P,(v;)nsnr/(1 + P,(vk)nsnr), depends on the
spatial correlation model in use. For applications where a
prior spatial PSD of coherence model, P,(vy), is approxi-
mately known, one can easily adopt a reduce-rank scheme
that only utilize certain significant spatial-spectral modes of
the spatial correlation function to combine beamformed data,
without much performance loss. For adaptive applications,
where P,(1;) has to be estimated from the cross-spectral
density matrix (CSDM) of modular array’s beamformed out-
puts. Given very limited amount of stationary available data,
reduced-rank scheme provides a feasible solution for balanc-
ing the performance and solution stability in WFC ranging.

As pointed out earlier, the general numerical procedures
of pre-calculating the parameters used in the multi-rank
processor applies to any coherence model of one’s choice,
no matter what are the choice of L; and L.y, if or not alias-
ing is present (due to the choice of L; with respect to the
Lcon). However, the performance of the passive ranging
system may vary for different levels of spatial coherence.

For an ideal environment with perfect coherence, L; <
Lo always holds. We have R, =1 - 17 and P(v) = 6(v).
Hence, the only non-zero coefficient in the PSD is P,(v;) =
1, resulting in a rank-1 solution,

Jar(r,0) :|e (n)y (t)|2

Zs (r,0)dg(t)

i=1

In this case, the solution is simply reduced to a coherent
beamforming solution across the whole array (a rank-1
matched filter solution).

On the other extreme, when there is no coherence existing,
equivalently Ly > Lo, we have R, = Tand P,(v) = 1.
Hence, P,(v;) = 1,i=1,2,..., L, resulting in

Jur(r,0) Z\e vy |
e (v1) ’
= : y(t,r,0)
e”(vL)
L
o [y (., 0)° = Isf (r, 0)di (1)

i=1
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which is simply a non-coherent solution by combining all
modular arrays’ beamforming output powers.

In practice, for effective and unambiguous passive WFC
ranging, we need to use a broadband approach, where many
frequency bins of reasonable coherence levels should be uti-
lized. Therefore, the framework developed here can be fur-
ther extended to include frequency parameter into the spatial
coherence matrix.

5. CONCLUDING REMARKS

We develop in this work some asymptotic results suitable for
multi-rank processing using a large-scale distributed arrays
for passive WFC ranging system operating in environments
subject to spatial coherence loss. Under a Gaussian assump-
tion on data model, our solution yields a two-stage process-
ing scheme, a module level beamforming followed by a spa-
tial combining utilizing the spatial coherence existing in the
distributed beamformers’ outputs. Using an exponential co-
herence model, our analytical solution provides a simple way
of choosing inter-module spacing, mode filters and combina-
tion coefficients used in the multi-rank processor to harvest
possible spatial coherence. The general framework based on
asymptotic relation should apply to different coherence mod-
els encountered in practice, as long as the distributed system
is large enough.
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