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ABSTRACT

The nonlinear nature of the source localization problem creates bias
to a location estimate. The bias could play a significant role in limit-
ing the performance of localization and tracking when multiple mea-
surements at different instants are available. This paper performs
bias analysis of the source location estimate obtained by the maxi-
mum likelihood estimator, where the positioning measurements can
be TOA, TDOA, or AOA. The effect of bias to the mean-square lo-
calization error is examined and the amounts of bias introduced by
the three types of measurements are contrasted.

Index Terms— Maximum likelihood estimator, bias, time of
arrival, time difference of arrival, angle of arrival

1. INTRODUCTION

The mean-square error (MSE) is a common measure on the perfor-
mance of a source location estimator [1]-[4]. The MSE is the ex-
pectation of the sum of the squared differences between the coordi-
nates of a source position estimate and the actual. Due to the non-
linearity of the source localization problem, the MSE is composed
of two parts: the variance and the bias square. When the noise level
is small, the variance dominates and the bias is negligible. Hence,
the Cramer-Rao lower bound (CRLB), which is developed for an
unbiased estimator, is often used as a reference for evaluating the
performance of a location estimator.

In many applications such as tracking, multiple measurements
are available at different time instants. The information of the mea-
surements can be integrated over time and the location variance will
be decreased as more measurements are collected. On the other
hand, the bias will not be reduced. Bias is a known problem in
tracking [2] and limits the performance. Some attempts have been
made in developing localization algorithms to minimize the amount
of bias, e.g. [3]-[4].

In this paper we study the bias of the maximum likelihood es-
timator (MLE) [5] for source localization. We choose the MLE be-
cause it is asymptotically efficient and is often served as a benchmark
for performance evaluation. The measurements considered are time
of arrival (TOA), time difference of arrival (TDOA) and angle of
arrival (AOA). All of these measurement functions are highly non-
linear with respect to the unknown source position. The bias of the
MLE of a general estimation problem has been investigated in the
mathematical and statistical literature [6]-[8]. The bias result there
is not easy to apply in engineering practice. In [9], Gavish and Weiss
derived a bias formula for the MLE for bearing only tracking.

We derive the theoretical bias of the MLE for the three types
of positioning measurements when the noise is Gaussian. The bias
square is compared with the variance of the MLE to examine the ef-
fect of bias in the localization accuracy. The amounts of location bias

for the three types of measurements will be contrasted, which pro-
vides insight on the type of measurements that will be less sensitive
in causing bias. Simulations are included to support the theoretical
developments.

The rest of the paper is organized as follows. Section 2 depicts
the localization scenario and introduces the three localization mea-
surements. In Section 3, the bias of the MLE for source localization
is derived. Section 4 provides simulation results to support the theo-
retical analysis and Section 5 is the conclusion.

2. LOCALIZATION PROBLEMS

We consider the scenario that one target is to be localized by M
receivers as shown in Fig. 1. The target is at unknown location

uo =
[
xo
u yo

u

]T
and the receivers are at known positions si =[

xsi ysi
]T

, i = 1, 2, . . . ,M . Target localization is accomplished
by using TOA, TDOA, or AOA measurements.

The TOA of a signal from the target to receiver i, denoted by τi,
obeys the relationship

cτi = cτo
i + nτi = ||uo − si||+ nτi (1)

where c is the signal propagation speed, τo
i is the true TOA, nτi

represents the additive measurement noise and || ∗ || denotes the
Euclidean norm. The TOAs from all sensors can be expressed in

vector form as cτ =
[
cτ1 cτ2 · · · cτM

]T
= cτ o + nτ ,

where τ o =
[
τo
1 τo

2 · · · τo
M

]T
and nτ is the noise vector.

The TDOA measurement between receiver pair (i, 1) is

cτ̃i,1 = cτ̃o
i,1 + nτ̃i,1 = ||uo − si|| − ||uo − s1||+ nτ̃i,1 . (2)

The collection of TDOAs is cτ̃ =
[
cτ̃2,1 cτ̃3,1 · · · cτ̃M,1

]T
=

cτ̃ o + nτ̃ , where τ̃ o =
[
τ̃o
2,1 τ̃o

3,1 · · · τ̃o
M,1

]T
is the true

TDOA vector and nτ̃ is the noise for TDOA. In the AOA case, the
angle measurement of receiver i follows

βi = βo
i + nβi = arctan

yo
u − ysi

xo
u − xsi

+ nβi . (3)

The AOA measurement vector is β =
[
β1 β2 · · · βM

]T
=

βo + nβ , where βo =
[
βo
1 βo

2 · · · βo
M

]T
is the true AOA

vector and nβ is the AOA noise.
The three measurement types can be represented in a generic

form as
m = f(uo) + n (4)

where m is the N × 1 measurement vector with N = M for TOA
and AOA and N = M − 1 for TDOA, f(uo) represents the func-
tional relationship of the noiseless measurement vector in terms of
the unknown position uo and n is the additive noise. We assume n
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is zero mean Gaussian with covariance matrix Q. We are interested
in examining the amount of bias in the source location estimate ob-
tained by the MLE, when the three kinds of positioning measure-
ments are used. The bias results derived below are in term of the
variances of the TOA, TDOA, and AOA. The bias can be made in
terms of the SNR of the raw signal measurements through the CRLB
of the three positioning measurements [10]-[12].

3. THEORETICAL BIAS ANALYSIS

Since the noise is zero mean Gaussian, the MLE solution û is

û = argmin(J) (5a)

where

J
�
= (m− f(u))TQ−1(m− f(u)). (5b)

Representing the gradient of J with respect to u as p(u) =[
px(u) py(u)

]T
, û satisfies the equation

p(û) =
∂J

∂u

∣∣∣∣
û

= 0. (6)

The expectation of the difference between û and uo gives the bias
bû = E

[
û− uo

]
. We shall use (6) to obtain the bias bû, without

explicitly solving û.
The Taylor-series expansion of p(û) at uo up to second order is

p(û) �p(uo) +
∂p(uo)

∂uT
(û− uo)

+
1

2

⎡
⎣(û− uo)T

(
∂2px(uo)

∂u∂uT

)
(û− uo)

(û− uo)T
(

∂2py(u
o)

∂u∂uT

)
(û− uo)

⎤
⎦ (7)

where we have used
∂p(uo)

∂uT to denote
∂p(u)

∂uT evaluated at u = uo,

and similarly for
∂2px(uo)

∂u∂uT and
∂2py(u

o)

∂u∂uT .
Since p(û) = 0, rearranging (7) gives

bû = E[û− uo] � −E

[(
∂p(uo)

∂uT

)−1

(p(uo) + g(uo))

]
(8)

where g(uo) represents the second order terms in (7). Appendices
A and B simplify (8) by evaluating the expectation and the bias is
equal to

bû � A−1

[
4

(
N∑
i=1

Ciei

)
− d

]
(9)

where ei is an N × 1 zero vector except its i-th element is unity.
For uncorrelated noise of equal noise power, the matrices A and Ci

are given by (15a) and (18) and the vector d is defined in (19)-(20).
For the general case of any symmetric and positive definite Q, their
values are given in Appendix B.

(9) is the generic form of the bias. When f(uo) takes on different
measurement types, the first and second order derivatives will be
different, yielding different amount of bias in the MLE solution. We
shall provide below the derivatives for the three measurement types
to obtain A, Ci and d.

For the TOA case, from (1), with i = 1, 2, · · · ,M ,

∂fi(u
o)

∂u
= ρi,

∂2fi(u
o)

∂u∂uT
= r−1

i ρ⊥
i , (10)

where fi(u) is the i-th element of f(u), ri = ||uo − si||, ρi =
r−1
i (uo − si), ρ

⊥
i = I− ρiρ

T
i and I is the identity matrix.

For the TDOA case, from (2), with i = 2, 3, · · · ,M ,

∂fi−1(u
o)

∂u
= ρi−ρ1

∂2fi−1(u
o)

∂u∂uT
= r−1

i ρ⊥
i −r−1

1 ρ⊥
1 . (11)

For the AOA case, from (3), with i = 1, 2, · · · ,M ,

∂fi(u
o)

∂u
= r−1

i Tρi

∂2fi(u
o)

∂u∂uT
= r−2

i T
(
ρ⊥
i − ρiρ

T
i

)
(12)

where T =

[
0 −1
1 0

]
.

In the next section, we support the theoretical development by
computer simulation and reveal the contribution of the bias to the
MSE.

4. SIMULATION

The simulation used 8 receivers to localize one target. The tar-
get position is randomly generated with uniform distribution in an
area of 500 × 500 centered at the origin. The receivers are ran-
domly deployed in an area of 50 × 50 with uniform distribution
also centered at the origin. For a given geometry, the bias square
and MSE of the MLE solution are computed over L = 5000 en-

semble runs, where they are obtained by

∥∥∥∥ 1
L

L∑
l=1

(û(l) − uo)

∥∥∥∥
2

and

1
L

L∑
l=1

(û(l) − uo)T (û(l) − uo), and û(l) is the target position esti-

mate at ensemble l. The MLE is implemented using gradient search
initialized at the true target position. To eliminate the dependency
of a particular geometry, the bias square and MSE presented are the
average of 300 different geometries.

Fig. 2 shows the bias square and MSE of the TOA localization
case as the noise power increases, where the covariance matrix is
Q = σ2

τI. The bias values from the developed formula match very
well with the simulation bias results before the threshold effect oc-
curs. When σ2

τ is very small, 10−2, the bias square of the MLE is
much smaller than the CRLB. However, the contribution of the bias
to the MSE increases as the noise level increases.

Fig. 3 illustrates the localization performance using TDOAs in
the presence of correlated noise. The noise covariance matrix is Q =
1
2
σ2
τ̃ (I+E) and E is the all one element matrix. The theoretical bias

follows very well with the simulation results . The simulation of the
AOA case is shown in Fig. 4, where Q = σ2

βI and the unit of σβ

is radians. The observations are very similar to the other two cases.
Comparing Figs. 2-4 reveals that TOA creates least bias in the source
position estimate, followed by TDOA and then AOA. At the same
noise power, TOA has much smaller bias than TDOA. Note that the
better performance of TOA is on the expense of time synchronization
between the target and receivers which is possible for cooperative
localization only.

When receivers are able to have multiple measurements at dif-
ferent time instants, say K, the contribution of bias to the MSE for
the TOA case as K increases is shown in Fig. 5. The noise power
σ2
τ is set at 10 and the results are also the average of 300 random

geometries. At each ensemble run, K estimates are averaged be-
fore obtaining the bias square and MSE. The number of ensemble
averages is 500. Also shown in Fig. 5 is the theoretical MSE that is
obtained by the sum of the trace of the CRLB and the theoretical bias
square from (9). As K increases, the variance drops, the bias square
stays constant, and the MSE approaches the bias square which lim-
its the MSE. The bias therefore needs to be carefully considered in
localization with multiple measurements and tracking.
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5. CONCLUSION

We have derived the theoretical expression that can predict accu-
rately the bias of the source location estimate from the MLE when
the SNR of the received signals is not small. The bias is insignificant
compared to variance when the noise level of the positioning mea-
surements is small and it becomes non-negligible as the noise level
increases. The bias values for TOA, TDOA and AOA localization
are contrasted and TOA yields the least amount of bias, followed
by TDOA and AOA. The significant effect of bias in limiting per-
formance when multiple measurements are available is also demon-
strated.

APPENDIX A. UNCORRELATED NOISE
OF EQUAL NOISE POWER CASE

Let us consider Q = σ2I, where σ2 is the noise power.

p(u) =
∂J

∂u
= −2σ−2

(
∂f(u)

∂uT

)T

(m− f(u)) (13)

and
∂p(uo)

∂uT is equal to

∂p(uo)

∂uT
= A−B (14)

where

A = 2σ−2

(
∂f(uo)

∂uT

)T (
∂f(uo)

∂uT

)
(15a)

B = 2σ−2
N∑
i=1

(mi − fi(u
o))

∂2fi(u
o)

∂u∂uT
. (15b)

The inverse of (14) can be approximated by(
∂p(uo)

∂uT

)−1

= (I−A−1B)−1A−1 � A−1+A−1BA−1
(16)

when the measurement noise is small, so that the higher order terms
of B can be ignored.

From (13) and (16), since the matrix A−1 is independent of
noise,

E

[
−
(
∂p(uo)

∂uT

)−1

p(uo)

]
�

E

[
2σ−2A−1BA−1

(
∂f(uo)

∂uT

)T

n

]

where n = m− f(uo). Substituting the definition of B from (15b)
and noting that E[nnT ] = σ2I, the first component of bias is

E

[
−
(
∂p(uo)

∂uT

)−1

p(uo)

]
� 4A−1

N∑
i=1

Ciei (17)

where

Ci = σ−2

(
∂2fi(u

o)

∂u∂uT

)
A−1

(
∂f(uo)

∂uT

)T

. (18)

The second bias component −E

[(
∂p(uo)

∂uT

)−1

g(uo)

]
is quite

tedious to evaluate and we will make some approximation. When the

noise level is small, we have from (14),
∂p(uo)

∂uT � A. In addition,

d
�
= E[g(uo)]

=
1

2
E

⎡
⎣tr

(
∂2px(uo)

∂u∂uT × (û− uo)(û− uo)T
)

tr
(

∂2py(u
o)

∂u∂uT × (û− uo)(û− uo)T
)
⎤
⎦

� 1

2

⎡
⎣tr

(
E
[
∂2px(uo)

∂u∂uT

]
×CRLB(uo)

)
tr
(
E
[
∂2py(u

o)

∂u∂uT

]
×CRLB(uo)

)
⎤
⎦

(19)

where tr(∗) represents the trace operation. The approximation is
valid for small measurement noise and the fact that MLE is asymp-
totically efficient. CRLB(uo) is the CRLB of uo when its bias is
neglected.

After some algebraic manipulation, it can be verified that, start-
ing from (14),

E

[
∂2px(u

o)

∂u∂uT

]
= 2

N∑
i=1

{hT
i exGi +Giexh

T
i + (Giexh

T
i )

T },
(20a)

E

[
∂2py(u

o)

∂u∂uT

]
= 2

N∑
i=1

{hT
i eyGi +Gieyh

T
i + (Gieyh

T
i )

T }.
(20b)

where hi = σ−1 ∂fi(u
o)

∂u
, Gi = σ−1 ∂2fi(u

o)

∂u∂uT , ex =
[
1 0

]T
and

ey =
[
0 1

]T
.

With the use of the CRLB(uo) for a given positioning mea-
surement type, E[g(uo)] can be evaluated and the second compo-
nent of the bias can be obtained:

−E

[(
∂p(uo)

∂uT

)−1

g(uo)

]
� −A−1d. (21)

APPENDIX B. GENERAL CASE

Let m̌ = Q− 1
2m and f̌(u) = Q− 1

2 f(u), where Q
1
2 represents the

square root of Q so that Q
1
2Q

1
2 = Q. The (i, j) element of Q− 1

2

is denoted by αi,j . Following the same derivations as in Appendix
A, the bias is (9), where the matrices A and Ci become

A = 2

(
∂f(uo)

∂uT

)T

Q−1

(
∂f(uo)

∂uT

)
(22a)

Ci =

(
N∑

j=1

αi,j
∂2fj(u

o)

∂u∂uT

)
A−1

(
∂f(uo)

∂uT

)T

Q− 1
2 (22b)

The vector d is given by (19) and the second derivations are

(20a) and (20b), where hi =
N∑

j=1

αi,j
∂fj(u

o)

∂u
, Gi =

N∑
j=1

αi,j
∂2fj(u

o)

∂u∂uT .
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Fig. 1. Localization scenario. The solid rectangle denotes the source
to be localized. The circle represent the sensors.
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Fig. 3. Bias square and MSE in TDOA localization using MLE.
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Fig. 4. Bias square and MSE in AOA localization using MLE.
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Fig. 5. Behavior of the bias square and MSE of the MLE for TOA
localization with multiple measurements at different time instants.
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