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Abstract—This paper proposes a novel direction-of-arrival
estimation method in a general 3-dimensional array configuration
for multiple speech signals uttered simultaneously. The method
is based on sparseness in the time-frequency representation of
speech signal and is applicable to an underdetermined case
where the sources outnumber sensors. At first, we introduce
a parameterized closed surface to which we refer the phase
difference manifold. This is defined in the space of phase
difference vectors between sensors in order to provide the one-to-
one correspondence between the induced phase difference on this
sphere and a propagating direction vector of the source. Instead
using the conventional pseudo-inverse mapping algorithm, the
selection of phase difference vectors located or closely located on
the phase difference manifold as a set of reliable observations.
Finally, the author’s method utilizing kernel density algorithm
is generalized for arbitrary array sensors case. The conducted
experiments demonstrate that the method utilizing the reliable
cell selection and the kernel density estimator with appropriate
bandwidth determination performed effectively.

I. INTRODUCTION

The localization of sound sources is essential in the study
of human-machine communication systems and it is widely
used for a variety of applications. Numerous methods for
estimating the direction-of-arrival (DOA) of sources using a
microphone array have been studied extensively [1]. While
different techniques such as MUSIC exist [2], most typical
DOA estimation systems utilize the time-delay of arrival
(TDOA) between different microphones. The generalized cross
correlation phase transform method and its variance are well-
known [3]. For multiple simultaneously-uttered sources even
for the underdetermined case where sources outnumber sen-
sors, the effectiveness of source separation schemes has been
demonstrated. The separation-based methods are a variety of
histogram techniques, clustering approaches such as k-means
algorithm, and ICA-based approaches. The underlying DOA
estimation problems addressed in this paper are summarized
as follows. a) Array configuration of multiple sensors in
3-dimensional arrangement is arbitrary, b) Multiple speech
sources uttered simultaneously, and c) Sources outnumber
sensors.
This paper presents a new approach for estimating multiple

speaker’s DOAs based on the time-frequency property known
as W-disjoint orthogonality and its variances [4]-[8]. The
existing methods, such as [4],[7]-[9], cope with the problem

under the same conditions a)-c) mentioned above. Huang et
al.[4] introduced the method accumulating delays estimated at
individual Short Time Fourier Transform (STFT) components,
and searching the peak positions of combined delay histograms
which are generated by a set of microphone pairs. The
method described in [8] applies their DOA finding algorithm
at individual components of the STFT domain to estimate a set
of DOA vectors. It finally employs a fusion process to detect
DOAs of speakers. Their closed form solution provided by
the Moore-Penrose type pseudo-inverse of the over-determined
linear relationship between the propagation direction vector
and the delay vector is effectively utilized for multiple-sensor
scenario. Araki, et al.[7] also employ the source sparseness
assumption in the context of blind source separation, and
apply k-means algorithm to cluster the normalized vectors
in the STFT domain. They assume the centroid of each
cluster provides the DOA of the source corresponding to the
cluster and apply the pseudo-inverse operation as in [8]. In
contrast to these studies including the method described in
this paper, Nesta et al. [10] proposed a method utilizing the
blind separation based on the independent component analysis.
They use the ratio of the elements of the de-mixing matrices
obtained through the source separation and employ these to
accurate estimation.
The proposed DOA estimation method in this paper is based

on the sparseness of speech signal representation of STFT
for coping with multiple sources even in underdetermined
condition. At the first part of this paper we introduce a
parameterized sphere, which is referred to the phase difference
manifold, defined in the space of phase difference vectors
between sensors. The proposed manifold provides a one-to-
one correspondence between the induced phase difference
vector on this manifold and the propagation direction vector
of the source. With the use of this unique relationship, we
need not to use the conventional pseudo-inverse mapping.
The process of the proposed DOA estimation algorithm is
summarized by the following three steps. Step 1) From given
phase difference observations, we select subset of observations
which are closely located on the phase difference manifold.
This is because these are considered to be reliable for DOA
estimation. Step 2) Apply the established mapping from phase
manifold to the propagation direction vector for the selected
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phase difference vectors. Step 3) Generalized author’s DOA
estimation method based on kernel density estimation [11] is
applied, and finally, the peaks of the estimated probability
density function of DOA yield the consequence direction
angles of the sources.

II. ARRAY SYSTEM

Consider an array of M sensors with a given geome-
try. The sensors are omni-directional and observe acoustic
signals generated by far-field speech sources. Let rm =
[xm, ym, zm]T (m = 1, · · · ,M) denote the location of the
m-th sensor in 3-D space, and we assume the first sensor is
located at the origin (r1 = 0) without loss of generality. The
source direction vector referred to as the propagation direction
vector is defined by

a(φ, θ) = [sinθcosφ, sinθsinφ, cosθ]T (1)

where, φ (−π ≤ φ ≤ π) and θ (0 ≤ θ ≤ π) denote
the azimuth and elevation angles of the source, respectively.
The source’s propagating wave with traveling speed c induces
the TDOAs δm (m = 1, · · · ,M) between m-th sensor and
the reference. They are integrated in the following (M -1)
dimensional vector.

δ := [δ2, · · · , δM ]T = −Ra(φ, θ)
c

(2)

where,

δm = −rT
ma(φ, θ)

c
, R := [r2, · · · , rM ]T

The TDOAs are estimated by using the phase difference or
cross-phase between the discrete Fourier transform (DFT) of
microphone signals.
Let Xm(l) be the L-point DFT of m-th microphone signal

and l (0,…,L/2) is the frequency bin index, then define
the following phase difference(PD) vector as a function of
frequency index l.

ϕ(l) = [ϕ2(l), · · · , ϕM (l)]T (3)

where
ϕm(l) = � Xm(l) − � X1(l)

The TDOA δm can be estimated by the phase difference of
observations as follow.

δ̂ := [δ̂2, · · · , ˆδM ]T

δ̂m = − 1
Δωl

ϕm(l) (4)

where Δω = 2πfs

L (fs:sampling frequency) is the frequency
interval between adjacent frequency points in the DFT domain.
As a consequence from Eqs.(2)-(4) for a single source case,

the approximated expression δ̂≈δ can be written in terms of
PD vector as follow.

ϕ(l) ≈ κ(l)Ra(φ, θ) (5)

where κ(l)=Δωl is the angular wave number at l. The problem
addressed in this paper is to approximate the left-hand phase
difference estimation by assigning a(φ, θ) in the right-hand

side of eq(5). Generally, our interest is in this case of M >3
because an over-determined relationship has to be solved for
the case.
In contrast to our approach for this problem discussed in

III, the references [7] and [8] use the Moore-Penrose pseudo-
inverse from ϕ(l) to a(φ, θ), then the nonlinear optimal
computation from a(φ, θ) to (φ, θ) is applied in [8].
It is noted that the problem for 2-dimensional case where all

sensors as well as sources are on the same plane, for instance
zm=0 for all m and θ=π/2, is much simpler than the general
discussions above. This restricted cases have been discussed
partly by authors in [13].

III. METHODS

A. Phase difference manifold

Consider the case at a frequency bin l. At first, we refer
to the right hand side of Eq.(5) as a PD manifold. It is a
parametric closed surface in the (M -1)-dimensional PD space
associated with the parameters (φ, θ) varying within −π ≤
φ ≤ π, 0 ≤ θ ≤ π, respectively. We denote the PD manifold
as follows:

ξ(l;φ, θ) = κ(l)Ra(φ, θ) (6)

where a(φ, θ) is a unit sphere, since it satisfies ‖ a(φ, θ) ‖=1
in 3-dimensional space. Therefore, the Eq.(6) provides one-
to-one correspondence between each point on the unit sphere
a(φ, θ) and the corresponding PD vectors on the PD man-
ifold ξ(l;φ, θ). The PD manifold comprises all PD vectors
each of which is induced by the source with a specific a(φ, θ).
The PD manifold can be expressed by

ξ(l;φ, θ) = Ra(φ, θ)κ(l)
= (sinθcosφrx + sinθsinφry

+cosθrz)κ(l) (7)

where
rp = [p2, · · · , pM ], for p = x, y, z

From above, it is obvious that the PD manifold is a closed
surface in the 3-dimensional subspace denoted by � spanned
by rx, ry and rz . As a consequence, we can define the unique
inverse mapping from a point on the PD manifold to the
angles (φ, θ) such that,

(φ, θ) = Ξ−1
[
ξ(l;φ, θ)

]

B. Inverse mapping Ξ−1

The relationship Eq.(7) derives an inverse mapping Ξ−1

from the PD manifold ξ(l;φ, θ) to the direction angles
(φ, θ) by the following process B-1) -B-3). These consecutive
procedures will be restrictively applied for the selected phase
difference observations located on the PD manifold.

B-1) Orthonomal basis in �
Since � is spanned by the basis system {rx, ry, rz}, we
may generate an orthonormal basis system {u1,u2,u3} by
applying the Gram-Schmidt orthogonalization.
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B-2) Representation of ξ(l;φ, θ)
In the new basis system, ξ(l;φ, θ) can be represented by

ˆξ(φ, θ) = c1(φ, θ)u1 + c2(φ, θ)u2 + c3(φ, θ)u3 (8)

where

ci(φ, θ) =< ˆξ(φ, θ),ui > , i = 1, 2, 3 (9)

<,> denotes the inner product.
In specific, we have⎡
⎣c1(φ, θ)
c2(φ, θ)
c3(φ, θ)

⎤
⎦ =

⎡
⎣cosφsinθ‖rx‖ + sinφsinθd1 + cosθd2

sinφsinθ‖û2‖ + sinθd3

cosθ‖û3‖

⎤
⎦
(10)

where d1=< u1, ry >, d2=< u1, rz >, d3=< u2, rz >.

B-3) Transformation to a(φ, θ)
Let define the matrix

T =

⎡
⎢⎣

1
‖rx‖ − d1

‖û2‖rx‖
d3d1−‖û2‖d2
‖rx‖‖û2‖‖û3‖

0 1
‖û2‖ − d3

‖û2‖‖û3‖
0 0 1

‖û3‖

⎤
⎥⎦

, then we can prove the following equation.

a(φ, θ) = T

⎡
⎣c1(φ, θ)
c2(φ, θ)
c3(φ, θ)

⎤
⎦ (11)

Finally, angles (φ, θ) are uniquely obtained from a(φ, θ) on
unit sphere that is, ‖ a(φ, θ) ‖=1.

C. Reliable T -F cell selection

For underdetermined multiple sources case, the sparseness
of the time-frequency (T -F ) or STFT domain representation
of speech signals is essential. Therefore, we start from the PD
vectors at individual T -F points which are denoted by ϕ(k, l)
where k, l is time frame and frequency bin indices respectively.
One of the basic ideas in this paper is to select a set of T -
F cells at which the PD vectors are closely located to the
PD manifold ξ(l;φ, θ). This is because the phase difference
estimation is thought to be reliable. For a given PD vector at
a T -F cell ϕ(k, l), we evaluate the Euclid distance between a
vector ϕ(k, l) and the PD manifold in ϕ-space by

d{(ϕ(k, l), ξ(l;φ, θ)} := min
φ,θ

‖ ϕ(k, l) − ξ(l;φ, θ) ‖ (12)

We select all T -F cells of (k,l) at which ϕ(k, l)s satisfy
d{(ϕ(k, l), ξ(l;φ, θ)} < th , since the estimated PD on
or closed to the PD manifold would be a reliable one.
The threshold value th is sufficiently small and determined
empirically. The concrete procedure is omitted for the sake of
space.
In addition to above T -F cell selection, the conventional cell

selection algorithm is also applied. The method is based on
the DOA feature consistency with surrounding T -F cells. [13]

D. Error distribution of (φ, θ)
Here, the proposed estimation is established by generalizing

previously proposed our DOA estimation scheme with a pair of
sensor to the algorithm for arbitrary multi-sensor case. The se-
lected T -F cells consist of unknown multiple clusters of cells,
each of which associated with one of the sources, for instance,
n-th source with DOA parameter (φn, θn). Thus reliable PD
vectors ϕ(k, l) belonging this cluster locate around a point
ξ(l;φn, θn). We assume that the error of the observed ϕ(k, l)
is independent identical omni-directional Gaussian distribution
with zero mean, and the variance σ.
Let define the tangent plane of ξ(l;φ, θ) at (φ, θ)=(φn, θn),

and assume that the observed PD vector ϕ(k, l) locates on
the tangent plane with 2-D circular Gaussian with its mean
ξ(l;φn, θn). According to the one-to-one correspondence be-
tween ξ(l;φ, θ) and (φ, θ) in III, the standard deviations of
Gaussian distribution with respect to φ and θ around (φn, θn)
are given by the following equations.

σx =
σ

κ(l) ‖ dξ
dx ‖(φ,θ)=(φn,θn)

, for x = φ, θ (13)

E. Kernel density estimator

Finally the kernel density estimation algorithm[13] is
applied to estimate the probability density function p(φ, θ) for
whole phase difference data ϕ(k, l) at the selected T -F cells.
At first, observed ϕ(k, l) on the PD manifold ξ(l;φ, θ) gives
(φ̂, θ̂) by using the inverse mapping

(φ̂, θ̂) = Ξ−1(ϕ(k, l)) (14)

As the consequence of this process for the selected PD data
ϕ(k, li), let denote the estimated DOA angles for individual
data by

(φ̂[li]
i , θ̂

[li]
i ) i = 1, · · · , I (15)

Then, the kernel density estimator applied to above data gives

p̂(φ, θ) =
1
I

I∑
i=1

1
ε(li)δ(li)

K

(
φ − φ̂

[li]
i

ε(li)
,
θ − θ̂

[li]
i

δ(li)

)
(16)

where ε(li) and δ(li) are the bandwidths of a 2-D kernel
function K(φ, θ) with respect to φ and θ, and are respectively
written by

ε(li) = σφ|l=li h̄, δ(li) = σθ|l=li h̄ (17)

where h̄ is a control parameter of these bandwidths.

IV. EXPERIMENTS

Experiment1: Experiments are conducted in a conference
room (Width=18m, Depth=15m, Height=8m) using a regular
tetrahedron microphone array with 4cm on each side.
Other experimental parameters are listed as follows:
Sampling frequency=8kHz, Sound speed c=340m, STFT
Frame Length=1024points, Window=Hamming, Frame
overlap=512points. For five sources case, the result of the
proposed T -F cell selection followed after the inverse
mapping of phase difference vectors is shown in Figure1.
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Three axes in Fig.1 (a) represent three phase differences ϕ2,
ϕ3, andϕ4, and a set of normalized phase difference data
plot at whole T-F cells is shown. On the other hand, Fig.1(b)
shows the plot of the inversely-mapped and selected phase
difference data is shown in the transformed/normalized space.
Figure demonstrates the effectively distributed results.
Experiment2: We conducted experiments using image

method to confirm performance of proposed method under
the reverberation condition is T60=1200ms. The real angles
of five speakers are; (φ1, θ1), (φ2, θ2), (φ3, θ3), (φ4, θ4),
(φ5, θ5)=(30,45),(60,60),(90,150),(120,120),(240,135)
degrees. Fig.2 illustrates the estimated probability density of
DOA derived from the proposed method and the histogram
obtained by the conventional method [8]. In the figure,
vertical lines show the real directions of speakers. The
proposed method estimates accurate results such as, (33, 44),
(61,58), (93,151), (121,122), (241,135)degrees.

V. CONCLUSION

In this paper, we presented a novel method for estimating
DOAs of multiple sources by using the phase difference of
time-frequency components. The method is applicable for ar-
bitrary array configuration in 3-dimesnsional space. A unique
relationship between phase difference vector and the direction
angles are established by introducing the phase different
manifold, and this relationship enables us to apply a previously
proposed kernel density algorithm utilizing a statistics of phase
difference error.

REFERENCES

[1] E.D.D.Claudio and R. Parisi, Microphone Arrays. Springer-Verlag, 2001,
ch. Multi-Source Localization Strategies, pp. 181-201.

[2] R. O. Schmidt, ”Multiple emitter location and signal parameter estima-
tion,” IEEE Trans. on Antennas and Propagation, vol. 34, pp.276-280,
1986.

[3] C. H. Knapp and G. C. Carter, ”The generalized correlation method
for estimation of time delays,” IEEE Trans. on Acoust. Speech Signal
Process., vol. ASSP-24, pp. 320-327, 1976.

[4] J. Huang, N. Ohnishi, and N. Sugie, ”A biomimetic system for lo-
calization and separation of multiple sound sources,” IEEE Trans.on
Instrumentation and Measurement, vol. 44, pp. 733-738, 1995.

[5] O. Yilmaz and S. Rickard, ”Blind separation of speech mixtures via
time-frequency masking,” IEEE Transactions on Signal Processing, vol.
52, no. 7, pp. 1830-1847, 2004.

[6] S. Arberet, R. Gribonval, and F. Bimbot, ”A robust method to count and
locate audio sources in a multichannel underdetermined mixture,” IEEE
Transactions on Signal Processing, vol. 58, no. 1, pp. 121-133, 2010.

−1
0

1

−1

0

1

−1

0

1

transformed normalized c
12

(b) Selected transformed PD distribution

transformed normalized c
13

tr
an

sf
or

m
ed

 n
or

m
al

iz
ed

 c
14

−0.05

0

0.05

−0.05

0

0.05
−0.05

0

0.05

normalized Φ
12

(a) PD distribution

normalized Φ
13

no
rm

al
iz

ed
Φ

14

ξ(φ,θ)

unit sphere

Fig. 1. PD transform and T -F cell distribution in ’-l space

Fig. 2. Histogram of normalized PD (a) and Estimated density function (b)

[7] S. Araki, H. Sawada, R. Murai, and S. Makino, ”Doa estimation for
multiple sparce sources with arbitrarily arranged multiple sensors,”
Journal of Signal Processing Systems, 2009.

[8] B. Berdugo, J. Rosenhouse, and H. Azhari, ”Speakers direction finding
using estimated time delays in the frequency domain,” Signal Processing,
vol. 82, pp. 19-30, 2002.

[9] H. Sawada, S. Araki, R. Mukai, and S. Makino, ”Grouping separated
frequency components by estimating propagation model parameters
in frequency-domain blind source separation,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 15, no. 5, pp. 1592-1604,
2007.

[10] F. Nesta, P. Svaizer, and M. Omologo, ”Cumulative state coherence
transform for a robust two-channel multiple source localization,” Proc.
ICA, pp. 290-297, 2009.

[11] N. Ding and N. Hamada, ”DOA estimation of multiple speech sources
from a stereophonic mixture in underdetermined case”, Trans. on Fun-
damentals, IEICE accepted for publication

[12] N. Ding, K. Fujimoto, and N. Hamada, ”Kernel density estimator
approach for solving underdetermined source localization problem in ar-
bitrary microphone configuration”, 26th Signal Processing Symposium,
Sapporo, Nov. 2011.

[13] F. Abrard and Y. Deville,“ A time-frequency blind signal separation
method applicable to underdetermined mixtures of dependent sources,”
Signal Processing, vol. 85, pp. 1389-1403, 2005.

[14] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

2604


