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ABSTRACT

This paper presents a novel algorithm for the automatic 3D

localization of a set of microphones in an unknown environ-

ment. Given the times of arrival at each microphone of a set of

sound events, the approach simultaneously estimates the 3D

positions of the sensors and the sources that have generated

the events. The only assumption made is that the emission

time of the sound events must be known in order to measure

the time of flight for each event. A closed form solution is

also proposed whenever a sound event coincides with a mi-

crophone position. Simulated and real experiments show the

validity of the approach for different setups of sensors and

number of events.

Index Terms— Microphone calibration, source localiza-

tion, factorization, closed form, bilinear optimization

1. INTRODUCTION

The localisation of a set of michrophones in an unknown en-

vironment is a longstanding problem that heavily impacts the

practical deployment of acoustic systems. Several applica-

tions using microphone arrays require the position of the array

element to be precisely known. An unreliable localisation de-

grades performance of both beamforming and direction of ar-

rival estimation techniques. When a large number of sensors

are deployed, their precise localisation in a three dimensional

world may be a critical and time consuming task. A possi-

ble solution is to calibrate the microphones’ positions simply

using a set of predefined sound events acquired by each sen-

sor. This self-calibration of the microphone’s positions using

solely sound events is still an open issue of research and a

very challenging problem.

Standard solutions revert to the use of manual (e.g. by

tape) measured pairwise distances among all the microphone

pairs and applying algorithms such as multidimensional scal-

ing (MDS) [1] to recover their spatial locations. However,

if the number of microphones is rather large or if they are

placed in configurations not easily reachable by a person, such

a procedure may become tedious and cumbersome in most

applications. In this case, it can be convenient to exploit

acoustic sources measuring the time of arrival (TOA) [2], the

phase [3, 4] or the intensity [5] of the signals acquired by

each microphone. Since also the acoustic sources positions

are generally unknown, this approach leads to the minimiza-

tion of a nonlinear cost functions which can be easily trapped

into local minima. Some methods try to overcome this draw-

back by introducing some additional constraints. For example

in [6] the former TOA-based approach of [2] is simplified by

assuming that all the acoustic sources are in the far field in re-

spect to the microphones. In such scenario Thrun’s intuition

[6] was of modelling the sensors and event locations as two

bilinear factors in the direction of arrival and microphone po-

sitions. This formalisation makes evident a rank constraint in

the matrix containing the TOA that can be used to efficiently

optimise for the unknown positions.

Even if the framework is elegant and efficient, Thrun’s ap-

proach is restricted to the far-field case thus limiting its appli-

cation in practical scenario. Here we present a novel formula-

tion of the microphone position self-calibration problem that

can deal explicitly with microphones located in the near-field

of the sound events. The proposed method finds an approx-

imate solution of a maximum likelihood (ML) problem by

transforming the original nonlinear least squares cost function

minimisation into a two step procedure. In the first step a Sin-

gular Value Decomposition (SVD) is employed to reduce the

unknowns from 3(N +M) to just nine parameters (N and M
being the number of microphones and sources respectively).

In the second step such nine parameters are estimated by

solving a nonlinear least square problem, by far much sim-

pler than the original one. Moreover, if the position of just

one sound event is coincident with one microphone, the sec-

ond step can be solved with a single linear least squares pro-

cedure, yielding to a full closed form solution. The proposed

method uses the whole information of the measured time-of-

flight (TOF) and it is based on a simple principle: even if

we have measured TOF at different time instants, the micro-

phones do not vary their position in time. This rigidity hy-

pothesis generates rank constraints over the matrix storing the

measured TOF and it can be used to find such a solution.

2. PROBLEM FORMULATION

Let us consider N microphones that lay in unknown positions

and let us define the 3D coordinates of the i-th microphone

with xi = (xi1, xi2, xi3)
�. Similarly, let us consider the
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M sound events and let us define aj = (aj1, aj2, aj3)
�

the unknown 3D coordinates of the j-th event. The difference

between the measured arrival time of the event j at the sensor

i and the emission time of the same event (i.e., the measured

TOF) can be expressed as:

ti,j = c−1|xi − aj |+ nij , (1)

where c is the signal propagation speed and ni,j is a re-

alization of an i.i.d zero mean Gaussian random variable rep-

resenting the measurement error. The estimated distance be-

tween the sensor i and the event j is simply di,j = c · ti,j .

It can be demonstrated [2] that the ML estimation of the 3D

positions is given by:

min
xi,aj

N∑
i=1

M∑
j=1

(|xi − aj | − di,j)
2 . (2)

The minimization in (2) is difficult because of the presence

of several local minima. The presence of such local minima

is common to many ML approaches to sensors position cali-

bration [2, 6, 3] and it is due to the squared roots of the Eu-

clidean distances between sensors and sources in eq. (2). A

gradient based method with an initial random guess will work

poorly in practice, especially in the case of significant mea-

surement errors and higher number of microphones and/or

sound events. Therefore a method for identifying a good ini-

tial choice of xi and aj is mandatory.

2.1. A rank constraint in near-field
In a noiseless case and with the assumption of no TOF mea-

surement errors, the following set of NM equations hold for

i = 1 . . . N and j = 1 . . .M :

|xi|2 + |aj |2 − 2xi · aj = d2i,j . (3)

From this equation, it is possible to obtain a bilinear form

in the sensors and events coordinate vectors if the quadratic

terms |xi|2 and |aj |2 can be eliminated. This can be obtained

by subtracting the (1, j)-th equation to the (i, j)-th equation

in (3) for i = 2 . . . N and j = 1 . . .M , giving a set of (N −
1)M equations such that:

|xi|2 − |x1|2 − 2(xi − x1) · aj = d2i,j − d21,j . (4)

Similarly, by subtracting the (i, 1)-st equation to the

(i, j)-th equation in (4) for i = 2 . . . N and j = 2 . . .M , we

obtain a set of (N − 1)(M − 1) equations as:

−2(xi − x1) · (aj − a1) = d2i,j − d21,j − d2i,1 + d21,1. (5)

The terms related to the microphones position can be then

organized in a (N−1)×3 matrix X such that X = {xid−x1d}
where i = 2, . . . , N and d = 1, 2, 3 (i.e. the 3D coordinates

of the sensor). Likewise, we can form a (M − 1) × 3 matrix

such that A = {ajd − a1d} where j = 2, . . . , N . We also

define the distance differences as

d̃ij = d2ij − d21j − d2i1 + d211, (6)

that can be stored in a (N−1)×(M−1) measurement matrix

D = {d̃i,j}. We can than write the collection of equations in

(5) as a bilinear product in X and A as:

−2XA� = D. (7)

The matrix D has a rank three constraint since D is a product

between the (N − 1) × 3 matrix −2X and the 3 × (M − 1)
matrix A�. If we apply a SVD to the matrix D we have, in case

of no noise, that the singular values after the third are equal to

zero. Thus we can truncate these SVD components such as:

UVW = D, (8)

where U is an (N −1)×3 matrix, V is a 3×3 diagonal matrix

and W is a 3×(M−1) matrix. In a practical situation, in pres-

ence of measurement noise, the rank of D will be higher than

three: in this case only the three highest singular values in V

will be considered reducing the size of U, V and W according to

the noise-free case. From (7) and (8), for whatever invertible

3× 3 matrix C, the following holds:

X = UC and − 2A� = C
−1

VW. (9)

In order to find the nine elements of the matrix C, we de-

fine a non-linear least squares minimization problem using

the equations in eq. (4), for i = 2 . . . N and j = 2 . . .M ,

which bears the quadratic terms |xi|2 previously discarded:

min
xi, aj

N∑
i=2

M∑
j=2

[|xi|2 − |x1|2 − 2(xi − x1) · aj − d2ij + d21j ]
2.

(10)

Notice that the whole sensors configuration is invariant to

any translation, so we can enforce without loss of generality

that the coordinates of the first sensor can be set to the global

origin of the reference system i.e. x1 = 0. Moreover, the

minimum solution is invariant to any rotation in the 3D-space,

so that the first source can be constrained to lay on the x-

axis of the reference system, yielding a12 = 0 and a13 = 0.

Using these five constraints, Eq. (10) can be rewritten as a

minimization problem in the entries of A and X such that:

min
xi, aj

N∑
i=2

M∑
j=2

[|xi|2 + |x1|2 − 2(xi − x1) · (aj − a1)+

− 2(xi1 − x11)a11 − d2ij + d21j ]
2.

(11)

Finally (11) can be recast as a minimization problem in re-

spect to the entries of C by substituting into (11) the known

values of X and A given by the SVD in (9). In particular defin-

ing (UC)ik as the ik-th element of the matrix UC and (UVW)ij
as the ij-th element of the matrix UVW we obtain :

min
C

N−1∑
i=1

M−1∑
j=1

[((UC)i1)
2 + ((UC)i2)

2 + ((UC)i3)
2+

+ (UVW)ij − 2(UC)i1a11 − d2i+1j+1 + d21j+1]
2,

(12)

Notice that the only unknown parameter in (12), apart from

the matrix C, is a11. This parameter can be substituted with
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the estimated distance between the first microphone and the

first source, according to equation (3), since the coordinate

value is univocally determined given the constraints on x1

and a1. Such value can be used as an initialization in order

to optimize a11 together with the matrix C. Alternatively, if

the measurement noise is quite low, the coordinate a11 can be

fixed to a constant. Even if the proposed procedure reduces

the former non-linear optimization problem to a simpler one,

the last step of finding the matrix C still results in a non-linear

problem which may get stuck in residual local minima. How-

ever, we show that a further constraint on just one source and

one sensor may lead to a closed form solution.

2.2. Closed Form Solution
If there is an additional assumption that a source position co-

incides with a microphone position, an alternative procedure

can be derived, which allows to find a completely closed-form

solution. In fact, if a11 = x11, a12 = x12 and a13 = x13, and

x1 = 0, the first source coordinates are set to the origin i.e.

a11 = 0. In this way the matrices of the sources and micro-

phones positions can be redefined respectively as A = {ajd}
and X = {xid}. The nine elements of C can now be fur-

ther reduced to six observing that the minimum solution is

invariant to any rotation in the 3D-space. This is an intrin-

sic indeterminacy of the sensors and sound events localiza-

tion problem since we can always obtain an orbit of minimal

solutions by applying an arbitrary rotation to the sensors po-

sition and its inverse to the sound events position. In our case,

any real square matrix admits a QR decomposition such that

C = QR where Q is a rotation matrix and R is an upper triangu-

lar matrix. Thus, without loss of generality, we can arbitrarily

choose the Q matrix to be the identity matrix i.e. Q = I. In

this way, we can simply substitute C with R in (9), obtaining:

X = UR and − 2AT = R
−1

VW. (13)

Defining the matrix R as follows:

R =

⎛
⎝
r1 r2 r3
0 r4 r5
0 0 r6

⎞
⎠ , (14)

eq. (10) can be expressed in term of R, using eq. (13):

R
∗ = argmin

R

N−1∑
i=1

M−1∑
j=1

[(r1ui1)
2 + (r2ui1 + r4ui2)

2 +

+ (r3ui1 + r5ui2 + r6ui3)
2 + (UVW)ij − d2i+1j+1 + d21j+1]

2,
(15)

where uik denotes the ik-th element of the matrix U. Develop-

ing the first three squared terms in (15) and grouping together

all the other terms we obtain:

R
∗ = argmin

R

N−1∑
i=1

M−1∑
j=1

[u2
i1(r

2
1 + r22 + r23) + u2

i2(r
2
4 + r25)+

+ u2
i,3r

2
6 + 2ui,1ui,2(r2r4 + r3r5) + 2ui,1ui,3(r3r6)+

+ 2ui2ui3(r5r6)− kij ]
2,

(16)

where
ki,j = −(UVW)ij + d2i+1j+1 − d21j+1. (17)

Defining the vector si for i = 1 . . . N , the vector f , the (N −
1)(M−1) vector k and the 6× (N−1) matrix S respectively

as:

si =
(
u2
i1 u2

i2 u2
i3 2ui1ui2 2ui1ui3 2ui2ui3

)�
;

f =
(
r21 + r22 + r23 r24 + r25 r26 r2r4 + r3r5 r3r6 r5r6

)�
;

k =
(
k1,1 k2,1 . . . kN−1,1 k1,2 . . . kN−1,M−1

)�
;

S =
(
s1 s2 . . . sN−1

)�
;

and finally the (N−1)(M−1)×6 matrix P obtained stacking

M − 1 times the matrix S, we can express eq. (15) as a linear

least squares problem in f as follows:

f∗ = argmin
f

= (|Pf − k|)2. (18)

The closed form solution of eq. (18) is finally given by:

f∗ = (P�P)−1
P
�k. (19)

The values of R can now be easily recovered from the six ele-

ments of f∗ as follows:

r6 = ±
√

f3; r5 = f6/r6;

r4 = ±
√

f2 − r25; r3 = f5/r6;

r2 = (f4 − r3r5)/r4; r1 = ±
√

f1 − r22 − r23;

(20)

where fi is the i−th element of f∗. The sign ambiguities in

(20) produce eight different R matrices corresponding to the

combinations of the three specular reflections of the whole

coordinate set of sensors and event sources. Given one of the

R found by (20), the matrices X and A can be easily recovered.

If necessary, one of the eight matrices can be selected using

additional information about sensor/events position.

Concerning the computational complexity of the closed form

solution, the procedure requires the solution of a least squares

system of size MN and 6 using a pseudoinverse, leading to

O(2MN2) if M > 6 or O(N3) if M ≤ 6.

3. EXPERIMENTS
We use a synthetic setup to compare our approach against the

gradient descent (GD) method used to the original maximum

likelihood cost function (2). The GD method is applied in a

twofold manner, taking as starting point either a random guess

or the solution obtained with the proposed method. The ex-

perimental setup consists of a fixed number of sensors and

10 audio events randomly placed in a 3D cubic region of side

equal to 1 m. A Gaussian random variable with zero mean and

std of 0.002 m has been added to each microphone-source dis-

tance in order to simulate the Distance Measurement Errors

(DME). We run 500 random trials for each configuration and

we use the Mean Position Error (MPE), defined as the mean of

the Euclidean distances between ground truth and estimated
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Fig. 1. MPE (logarithmic scale) versus the number of sensors for

10 sources and a standard deviation of 0.002 in the DME.
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Fig. 2. Real and estimated three dimensional positions of micro-

phones and acoustic sources obtained with the proposed method in a

real environment.

positions, averaged over all the trials. In order to account for

the intrinsic translational and rotational freedom of the solu-

tion, the estimated and real sensor positions were aligned us-

ing Procrustes Analysis. We test three methods: GD method,

our closed form solution (CF) and the closed form plus an ad-

ditional GD refinement (CF+GD). Concerning GD method,

microphone and source positions were initialized at random

coordinates inside the 3D cubic region. The obtained MPEs

for each method are displayed in Fig. 1 versus the number of

sensors. It can be seen that the proposed CF method outper-

forms the GD alone, regardless from the number of sensors.

Moreover the CF+GD method provides a significant further

improvement. Increasing the number of sensors results in a

worst performance for the GD due to the increased probabil-

ity of falling into local minima. Differently, the CF method,

with or without the gradient refinement, provides a quasi con-

stant performance with an MPE of about 0.0055 m for the CF

method and 0.0035 m for the CF+GD. The gradient refine-

ment improvement is stronger for low numbers of sensors (15
dB for 7 sensors) while it reaches an almost constant value of

about 3.5 dB for higher numbers. Further details on the syn-

thetic experiments can be found in [7].

A further experiment has been performed to test the method

in a real environment 1. Eight microphones have been placed

in a room of 6 × 4 × 3 m3. The room is characterised by re-

flecting walls and significant acoustic noise given mainly by

1Real data setup is available at the website www.isr.ist.utl.pt/

˜adb/code/

PC fans. An acoustic transducer is moved in 21 different po-

sitions, one of them being coincident with one microphone.

For each transducer position, a linear sweep chirp pulse, of 5
s duration and about 10 kHz bandwidth is transmitted and ac-

quired by the 8 microphones. Each of the 8 signals acquired is

compressed by a matched filter to achieve the best time reso-

lution. To evaluate the TOA, the time instant of the first peak

(corresponding to the direct path) exceeding a given thresh-

old is considered. Knowing the emission time the TOF has

then been calculated. The ground truth positions is provided

by a motion capture system (VICON). The CF method was

applied to the matrix of measured distances obtaining a 3D

reconstruction of microphone and source positions displayed

in Fig. 2 together with the ground truth. The MPE for the mi-

crophones was 0.0043 m, while the MPE for the event sources

was of 0.0125 m. The difference is mainly due to the fact that

acoustic sources were more spread all over the room, while

microphones were enclosed in a smaller volume.

4. CONCLUSIONS

We have presented a novel formulation for the microphone
position self-calibration problem. Our solution accounts for a
closed form-solution with a single additional constraint and it
can obtain remarkable results in real acoustic scenario.
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