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ABSTRACT

In many array processing, the received signals are nonstationary, or
in particular, noncircular. Widely linear minimum variance distor-
tionless response (WL MVDR) beamformers can exploit the non-
circularity of received signals and improve the performance of the
conventional MVDR beamformer. However, in the optimum WL
MVDR beamformer, the array steering vector (ASV) and the signal
noncircularity coefficient should be known a priori for the signal of
interest. This requirement puts strict limitation to the implementa-
tion of this beamformer. We therefore in this paper propose a ro-
bust approach to the optimal WL MVDR beamformer that can deal
with the uncertainties in the ASV and noncircularity coefficient. Two
variants of the proposed approach are developed based on the treat-
ment of the uncertainties. By doing so, the requirement on the exact
information is relaxed while the performance improvement can still
be obtained. Simulation studies are also provided to illustrate the
performance of the proposed approach.

Index Terms— Array signal processing, widely linear, MVDR,
robust beamforming.

1. INTRODUCTION

In array signal processing, beamforming is a widely used technique
to enhance a spatially propagating signal of interest (SOI) in the
presence of spatial interference signals plus noise [1]. The conven-
tional beamforming approaches based on second-order (SO) prop-
erty have been mainly focusing on stationary observations [2], result-
ing linear and time invariant (TI) beamformers. One well-known op-
timum beamformer is the minimum variance distortionless response
(MVDR) beamformer proposed by Capon [3]. However, when it
comes to SO nonstationary signals, conventional linear and TI ap-
proaches like MVDR beamformer turn out to be suboptimal. And in
many cases, SO nonstationary signals are also SO noncircular, which
may happen in many cases as stated in [4].

To exploit the noncircularity of observations, widely linear (WL)
filter based approaches have been proposed and shown with im-
proved performance (see, for example [4–7] and papers therein).
Particularly, paper [4] proposed a method of WL MVDR beam-
former for the reception of an unknown signal corrupted by SO non-
circular interferences. This WL MVDR beamformer shows perfor-
mance improvement over conventional MVDR beamformer in the
steady state and has the potential of processing up to 2(N − 1) rec-
tilinear interferences from an array of N sensor elements. To fur-
ther exploit the noncircularity of SOI, an optimal WL MVDR beam-
former is proposed in papers [8,9]. By this approach, signal compo-
nent contained in the conjugate of SOI is also retrieved. Thus, the
output SINR is further improved compared with WL MVDR beam-
former.

To fully benefit from the optimal WL MVDR beamformer, a
priori knowledge on the SOI array steering vector (ASV) and its
noncircularity coefficient is assumed to be available or preestimated.
However, in many cases of practical importance, there are some dif-
ficulties in determining both the exact ASV and the actual noncir-
cularity coefficient for SOI, which gives rise to the uncertainties in
beamforming. For example, the ASV uncertainties may be due to
the fact that the array response is not well calibrated, or that the di-
rection of arrival (DOA) of SOI is not accurately estimated. And
the uncertainty of noncircularity may be due to partial information
on the waveform, phase offset, and even frequency offset of SOI.
These kinds of uncertianties will seriously degrade the performance
of the WL MVDR beamformer, leading it to perform even worse
than MVDR beamformer.

To address the uncertainties in the WL MVDR based beamform-
ing, we propose a robust approach to the optimal WL MVDR beam-
former in this paper. Motivated by conventional robust beamform-
ing approaches for SO stationary observations, which has been ex-
tensively studied in recent years (see, for example, [10–12] and pa-
pers therein), we first formulate the robust WL MVDR beamforming
problem by maximizing the WL MVDR beamformer output power
subject to the constraint on the augmented steering vector mismatch.
The augmented steering vector error is deduced from the uncertain-
ties in SOI ASV and the noncircularity coefficient. As formulating
the whole uncertainty in the form of mismatch in augmented steer-
ing vector does not exploit its structure information, we then propose
the second approach by imposing this structure property in the robust
optimization formulation.

2. OPTIMAL WIDELY LINEAR MVDR

2.1. Signal Model

Suppose an array of N antennas is used for receiving narrowband
signals and the array output is a complex vector denoted by x(t) and
comprises of the contribution from SOI and interferences-plus-noise

x(t) = as(t) + v(t) (1)

where s(t) is the complex envelope of SOI (zero-mean and poten-
tially SO noncircular), v(t) is the interference-plus-noise compo-
nent, and a is the SOI steering vector with the �2-norm ‖a‖ = N . It
is further assumed that the interference signals contributing to v(t)
are assumed to be zero-mean, potentially SO noncircular and statis-
tically uncorrelated with s(t).

The adaptive beamformer is generally designed to be optimal
based on the SO statistics. The SO statistics of the noncircular ob-
servation x(t) are defined by

Rx
def
= < E[x(t)x(t)H ] > = πsaa

H +Rv

Cx
def
= < E[x(t)x(t)T ] > = πsγsaa

T +Cv

(2)
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where < · > denotes the time-averaging operation with respect to t
and Rv =< E[v(t)v(t)H ] >, Cv =< E[v(t)v(t)T ] >, πs is the

time-averaged power of the SOI πs
def
=< E[|s(t)|2] >, and γs

def
=

< E[s(t)2] >/πs is the noncircularity coefficient of the SOI. Notice
that depending the form of s(t), the value of |γs| may range from 0
to 1. For instance, when the complex envelope of signal is on a line,
|γs| is 1 and it is said to be rectilinear.

To exploit the noncircularity of x(t), the beamformer design
needs to be extended to include the conjugate component of the ar-
ray output. Let x̃(t) be the extended array output built by stacking
the array output and its conjugate component

x̃(t)
def
= [x(t)T ,x(t)H ]T

= ã1s(t) + ã2s(t)
∗ + ṽ(t) = Ãs̃(t) + ṽ(t)

(3)

where ã1 = [aT ,0T
N ]T , ã2 = [0T

N ,aH ]T , Ã = [ã1, ã2] and s̃(t) =
[s(t), s(t)∗]T . And the SO statistics of the extended array output
x̃(t) is

Rx̃ =< E[x̃(t)x̃(t)H ] > = ÃRs̃Ã
H +Rṽ (4)

where Rs̃ =< E[s̃(t)s̃(t)H ] >, Rṽ =< E[ṽ(t)ṽ(t)H ] >.
Given that w̃ denotes the 2N × 1 WL beamformer’s weight, the

output of the WL spatial filter is given by

y(t) = w̃H x̃(t) = w̃H ã1s(t) + w̃H ã2s(t)
∗ + w̃H ṽ(t) (5)

2.2. Optimal WL MVDR

Based on the signal model constructed, the WL MVDR beamformer
is proposed in [4] by applying the MVDR concept to the augmented
observation. Mathematically, the weight vector can be found by
solving the following convex optimization

minw̃ w̃HRx̃w̃ subject to ÃHw̃ = f (6)

where f = [1, 0]T . The solution to this optimization can be obtained
using the Lagrange multiplier and expressed as

w̃mvdr1 = R−1
x̃ Ã[ÃHR−1

x̃ Ã]−1f = R−1
ṽ Ã[ÃHR−1

ṽ Ã]−1f
(7)

From the development of the WL MVDR, we see that it only exploits
the noncircularity of interference and noise. Particularly, it only fil-
ters out the signal component associated with ASV ã1 in (3). When
s(t)∗ is uncorrelated with s(t), the constraint w̃H ã2 = 0 helps to
reduce the interference. However, when s(t)∗ is correlated with
s(t), this constraint will lead to signal suppression. To avoid this
problem, [8] proposed the optimal WL MVDR beamformer that can
retrieve the signal component from s(t)∗ by further exploiting the
noncircularity of SOI. Following the development in [8], the s(t)∗

can be decomposed as

s(t)∗ = γ∗
s s(t) + [πs(1− |γs|2)]1/2s′(t) (8)

where s′(t) is orthogonal to s(t). Thus, the signal model in (3) can
be rewriten as:

x̃(t) = (ã1 + γ∗
s ã2)︸ ︷︷ ︸

ãγ

s(t) + [πs(1− |γs|2)]1/2ã2s
′(t) + ṽ(t)︸ ︷︷ ︸

ṽγ(t)

(9)
The optimal WL MVDR is then designed via solving [8]

minw̃ w̃HRx̃w̃ subject to w̃H ãγ = 1 (10)

By defining R−1
ṽγ

=< E[ṽγ(t)ṽγ(t)
H ] > we arrive at the solution

as

w̃mvdr2 = [ãγR
−1
x̃ ãγ ]

−1R−1
x̃ ãγ = [ãγR

−1
ṽγ

ãγ ]
−1R−1

ṽγ
ãγ (11)

3. ROBUST OPTIMAL WL MVDR BEAMFORMER

In this paper, we consider the performance degradation problem ex-
perienced by the optimal WL MVDR beamformer due to the mis-
match between the actual and presumed knowledge of the parame-
ters (a, γs). Although the authors in [8] suggested that these a priori
knowledge can be estimated using blind identification approach (e.g.
JADE algorithm, which works only when the SOI is rectilinear and
the number of interference components is known) when the train-
ing sequence is not available, the estimation error resulting from the
blind identification approach due to practical constraints may con-
tribute to these mismatches. Hence, it is important to ensure the
robustness of this beamformer design.

Let ā denote the presumed SOI steering vector. Assume that ā
and a is confined within a multi-dimensional sphere with radius εa.
Also, we further assume that the mismatch between the presumed
and actual noncircularity coefficient (γs − γ̄s) has an absolute value
less than the square-root of εγ .

‖a− ā‖2 ≤ εa and |γs − γ̄s|2 ≤ εγ (12)

In the following, we propose two robust approaches to deal with the
uncertainties in steering vector and noncircularity coefficient.

3.1. WL-RCB1: Robust Against the Whole Uncertainty in the
Augmented ASV

We first approach the problem by translating the uncertainty con-
straints in (12) into the uncertainty for the whole extended steering

vector. Let e
def
= a − ā and γΔ

def
= γs − γ̄s denote the SOI steering

vector and noncircularity coefficient mismatches. The mismatch in
ãγ is denoted as ẽγ and can be calculated as

ẽγ
def
= ãγ − ãγ =

[
a− ā

(γ̄∗
s + γ∗

Δ)(ā∗ + e∗)− γ̄∗
s ā

∗

]
=

[
e

γ̄∗
se

∗ + γ∗
Δ(ā+ e)∗

] (13)

where ãγ stands for the presumed extended steering vector. The
whole uncertainty level then is evaluated by

‖ẽγ‖2 = ‖ãγ − ¯̃aγ‖2

≤ ‖e‖2 + (‖γ̄se‖+ ‖γΔā‖+ ‖γΔe‖)2

≤ εa + (‖γ̄s|√εa +
√
N
√
εγ +

√
εγ

√
εa)

2︸ ︷︷ ︸
ε1

(14)

Then, the formulation of the robust Capon beamforming (RCB)
can be applied to design the WL-RCB1 beamformer via the follow-
ing optimization:

w̃wl−rcb1 = argminw̃maxãγ w̃HRx̃w̃

subject to w̃H ãγ = 1, ‖ãγ − ¯̃aγ‖2 ≤ ε1

(15)

The optimization can be solved in two steps. For the first step, we
fix ãγ and find the optimal w̃, which gives rise to a solution like
w̃ = (ãH

γ R−1
x̃ ãγ)

−1R−1
x̃ ãγ . Then for the second step, we insert

the w̃ back into (15) and solve the actual ãγ . After some simple
mathematical operations, the optimization problem is reduced to

minãγ ãH
γ R−1

x̃ ãγ subject to ‖ãγ − ¯̃aγ‖2 ≤ ε1 (16)
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which is in a stand form of RCB and therefore can be solved accord-
ingly based on the solution in [12]. We denote the solution to (16)

as ˆ̃aγ and the WL-RCB1 beamformer weight is given by

wwl−rcb1 =
R−1

x̃
ˆ̃aγ

ˆ̃aH
γ R−1

x̃
ˆ̃aγ

(17)

3.2. WL-RCB2: Exploiting the ASV structure information

Recall that the optimal ASV has a structure like

ãγ =

[
a
0

]
+ γ∗

s

[
0
a∗

]
(18)

Formulating the uncertainty as a whole in the form of the mismatch
in the extended steering vector does not exploit this structural infor-
mation. This way, the uncertainty level is evaluated conservatively
by using the upper bound, thus leading to the overestimation of un-
certainty. The implication of overestimating the uncertainty is the
SINR performance loss from the degradation in the interference sup-
pression capability of the robust beamformer design [13–17].

Here we propose a structure-aided uncertainty based WL robust
beamformer that formulates the uncertainty constraints due to the
steering vector and the noncircularity coefficient separately while
maintaining the structural relationship between them. Applying the
methodology leading to (16), the formulation of the robust optimal
WL MVDR beamformer design with the structure-aided constraints
can be written as

min
a,γs

f(a, γs) subject to

{ ‖a− ā‖2 ≤ εa
|γs − γ̄s|2 ≤ εγ

(19)

The objective function f(a, γs) is given by the following expression

f(a, γs)
def
= ãH

γ R−1
x̃ ãγ

= (1 + |γs|2)aHDa+ 2�(γ∗
sa

HCa∗)
(20)

where �(x) stands for the real component of x. Note that we use
the following definition of R−1

x̃ to obtain the simplified expression
of f(a, γs)

R−1
x̃ =

(
D C
C∗ D∗

)
. (21)

Meanwhile, we observe that the objective function is a third-order
one and is not guaranteed to be convex, convex optimization method
can not be directly applied.

To solve this problem, we propose to modify the formulation by
optimizing (ãγ , γs) instead of (a, γs). And the reformulated opti-
mization can be expressed as:

minãγ ,γs ãH
γ R−1

x̃ ãγ subject to

⎧⎨
⎩

‖G1ãγ − ā‖2 ≤ εa
‖G2ãγ − γ∗

s ā
∗‖2 ≤ εa|γs|2

|γs − γ̄s|2 ≤ εγ
(22)

where G1 and G2 are the selection matrices that select the top
and bottom (N × 1) vector of ãγ , respectively. The second con-
straint requires |γs|, which can be replaced by |γ̄s| when unknown
(as |γs| ≈ |γ̄s| in general). For this problem, it is convex and can
be reformulated to be a second order cone (SOC) optimization prob-
lem and solved using some solver like SeDuMi [18]. According
to [11, 12], the WL-RCB1 is more efficient than the WL-RCB2 in
computation and can take the advantage of recursive eigendecompo-
sition to update the beamformer weights. More details on the im-
plmentation of SOC solver is omitted due to page restriction. After
obtaining the ASV estimation by solving (22), we can construct the
beamformer filter according to (17).
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Fig. 1. Performance comparison.

4. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed robust
WL MVDR algorithms with numerical simulations. We first exam-
ine the WL-RCB1, then followed by the WL-RCB2 for comparison.
We take 50 Monte Carlo trials to generate the results.

4.1. Performance of WL-RCB1

We assume that K = 2 narrowband binary phase shift keying
(BPSK) signals are impinging on a two-element array of half-
wavelength inter-element distance from directions {0o, 30o}. The
sampling rate is at 20 × 104. The normalized carrier frequencies
are assumed to be {0, 0}. The baud rates are {1/5, 1/9}. The
Nyquist-shaping pulse is taken as the pulse shaping function for
the BPSK signals with the roll-off factor taken to be 1. We set the
signal-to-noise-ratio (SNR) to be {10, 20} dB. The SOI’s initial
phase is set to be π/3 so that the γs = −0.5 + j0.866. For the
second signal,we set the initial phase to be 0. We assume that the
ASV of SOI is known a priori and the noncircularity coefficient
is subject to uncertainties. The nominal noncircularity coefficient
is with error level |γΔ| = εγ . And the error γΔ is drawn from
complex random Gaussian numbers. We set the value of εγ to be
{0.001, 0.01, 0.1, 0.2}. We in this case study use the exact value of
the error level to calculate the user parameter ε1 for the WL-RCB1.
We compare the proposed WL-RCB1 algorithm with Capon beam-
former (known ASV), Optimal WL MVDR under uncertainty in
noncircularity coefficient. The optimal Capon beamformer gives an
SINR output 10.2 dB for this case, while the optimal WL-MVDR
gives 13.3 dB SINR output. The result is shown in Fig. 1. From
this result, we can see that although the optimal WL-MVDR can
tolerate small uncertainty in the noncircularity coefficient, it’s per-
formance degrades heavily when the uncertainty is large. However,
the robust WL-RCB1 outperforms the the other beamformers for all
uncertainty levels.

4.2. Performance of WL-RCB2

In this case study, we further consider the steering vector mismatch.
Steering vector uncertainty is due to DOA error in this study. We
keep the same signal setup. The error in DOA of SOI is set to be 3◦,
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and the εγ = 0.001. Being blind to the exact errors in practice, we
scale the exact errors in both a and γs by a factor of 1.2, in squared
norm, to calculate the user parameters for all the robust algorithms
to be examined. We compare the performance of RCB, the struc-
ture aided WL-RCB2, the WL-RCB1, and the optimal WL MVDR
with mismatches. The result shown in Fig. 2 illustrates that under
the uncertainties, optimal WL-MVDR no longer outperforms Capon
beamformer. However, the proposed WL-RCB1 algorithm still out-
performs Capon beamformer consistently. Meanwhile, the structure
aided WL-RCB2 can further improve the performance by exploiting
the structure information.

Furthermore, we investigate the algorithm’s performance under
different input SNR. We take 200 snapshots. The result is shown
in Fig.3. We in this comparison takes the SINR output of RCB
as a benchmark comparison. The results demonstrate that the pro-
posed WL-RCB1 always outperforms the RCB and the optimal WL
MVDR with mismatches. And the structure aided WL-RCB2 out-
performs the WL-RCB1 for most SNRs.

5. CONCLUDING REMARKS

In this paper, we proposed a robust approach to the optimal WL
MVDR beamformer under uncertainties in both the noncircularity
coefficient and the ASV. WL-RCB1 algorithm was proposed to deal
with both uncertainties by modeling the whole uncertainty in the
augmented steering vector. WL-RCB2 algorithm was proposed to
exploit the structure property of the augmented steering vector to
individually deal with these two uncertainties. With experimental
examples, we illustrated the effect of uncertainty on the optimal WL
MVDR and the performance improvement brought by the proposed
methods. Overall, the proposed approach can bring performance be-
yond conventional Capon beamformer.
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