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ABSTRACT

The actual manifold vector (or steering vector) of the signal of in-
terest (SOI) is often imprecise in practical applications. However
the true manifold vector can be expressed as a product of a known
matrix and an unknown coordinate vector in many cases. This mod-
el can accommodate many manifold uncertainties, for instance, the
look direction error, local scattering, etc. Matched direction beam-
former (MDB) is referred to as the beamformer resolving the signal
that is drawn from an unknown direction inside the known subspace.
The main contribution of this paper is to propose a new MDB that
can estimates the coordinate vector associated with the SOI, without
using the knowledge of the interference subspace (IS). Moreover the
proposed approach is robust to the dimension overestimation of the
signal subspace.

Index Terms— Array beamforming, matched direction beam-
forming (MDB), signal subspace, look direction error.

1. INTRODUCTION

Consider an array with N sensors impinged by one signal of interest
(SOI) and M interference signals. The M + 1 signals are assumed
to be narrow-band, uncorrelated with each other and located in the
far field of the array. The covariance matrix of the received N × 1
array signal vector x(t), denoted by R, may be assumed to have the
following form:

R = E{x(t)xH(t)} = σ2
0a0a

H
0 +

M∑
i=1

σ2
i aia

H
i + σ2

nI (1)

where E{·} denotes the expectation operator, (·)H represents Her-
mitian transpose, a ∈ CN×1 stands for the array manifold vector (or
steering vector), and I is the identity matrix. We use subscript 0 to
indicate the entities related to the SOI. (σ2

0 , {σ2
i }Mi=1) are the powers

of the SOI and the M interference signals respectively. σ2
n denotes

the power of the additive white Gaussian noise. In practical appli-
cations, the covariance matrix can be estimated by using K received
snapshots {x(tk)}Kk=1 as follows:

R̂ =
1

K

K∑
k=1

x(tk)x
H(tk) (2)

Due to many practical reasons, the manifold vector a0 is not
perfectly known [1]. For instance, the look direction error can re-
sult in the difference between the actual manifold and the presumed
(or nominal) manifold. The straightforward consequence of this

mismatch is to cause a substantial performance degradation of con-
ventional adaptive beamformers [2]. However, in many cases this
unknown manifold vector a0 can be modeled to lie in a known p-
dimension linear subspace 〈H〉, but how to combine a0 using the
base of 〈H〉 is otherwise unknown [3, 4]. This means a0 may be
written as

a0 = Hb0 (3)

where the matrix H ∈ CN×p is known a priori but the coordinate
vector b0 ∈ Cp×1 is unknown. The most obvious example may be
the case of the look direction error. Using the Taylor expansion and
retaining the terms up to the second order, the actual manifold can
be approximated by [5, 3]

a(θ0) ≈ a(θ0) + (θ0 − θ0)ȧ(θ0) +
(θ0 − θ0)

2

2
ä(θ0) (4)

where θ0 and θ0, respectively, represent the true and nominal
direction-of-arrival (DOA) of the SOI. ȧ(θ0) and ä(θ0) denote
the first- and second-order derivatives of the array manifold with
respect to the nominal DOA θ0. Thus we can derive a matrix
H1 =

[
a(θ0) ȧ(θ0) ä(θ0)

]
such that a0 ∈ 〈H1〉. Also, we

may have the following approximations:

a(θ0) = a(θ0 −Δθ0) (5a)

≈ a(θ0)−Δθ0ȧ(θ0) +
(Δθ0)

2

2
ä(θ0)

a(θ0 ±Δθ) = a(θ0 ±Δθ −Δθ0) (5b)

≈ a(θ0) + (±Δθ −Δθ0)ȧ(θ0) +
(±Δθ −Δθ0)

2

2
ä(θ0)

where Δθ0 = θ0 − θ0 is unknown but Δθ, related to the expected
range of the DOA of the SOI, can be set a value even if the true
DOA is unavailable. In the simulation section, for instance, we set
Δθ = 2◦. After some straightforward algebraic manipulations, we
can obtain

a(θ0) ≈ (Δθ)2 − (Δθ0)
2

(Δθ)2
a(θ0) (6)

+
(Δθ0)

2 +ΔθΔθ0
2(Δθ)2

a(θ0 +Δθ)

+
(Δθ0)

2 −ΔθΔθ0
2(Δθ)2

a(θ0 −Δθ)

It is clear that a(θ0) also belongs to the known linear subspace 〈H2〉,
where H2 =

[
a(θ0) a(θ0 −Δθ) a(θ0 +Δθ)

]
. Note that both
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H1 and H2 can be computed prior to the beamformer processing
if the presumed DOA θ0 and array geometry information are avail-
able. The example of local scattering is discussed in [3, 6] and more
practical examples can be found in [4].

Also, in [7, 8] the flat ellipsoidal uncertainty set has been inves-
tigated, in which the true manifold vector is expressed as

a0 = a0 +Bbfe =
[
a0 B

] [
1 bT

fe

]T
, ‖bfe‖ ≤ 1 (7)

where a0 stands for the nominal manifold vector of the SOI, the
known N × (p − 1) matrix B is full column rank and the vector
bfe is unknown. Clearly the flat ellipsoidal uncertainty set can be
transformed to the model of (3) with H =

[
a0 B

]
and b0 =[

1 bT
fe

]T
.

In this paper, we assume that the coordinate vector b0 stays un-
changed over K snapshots and hence the contribution due to the SOI
in R is rank-1. The so-called matched direction beamforming (MD-
B) is referred to as the beamformer resolving the signal that is drawn
from an unknown direction 〈Hb0〉 inside the known subspace 〈H〉
[3, 4]. The problem to be addressed in this paper is that we estimate
the vector b0 by using the signal subspace instead of the interference
subspace (IS).

2. PREVIOUS WORK

In [3], it is assumed that the IS 〈AI〉 is exactly known (where AI =
[a1, . . . ,aM ]). Then it is shown that the vector b0 can be estimated
by

b0 = βP{(GHG)−1GHRG} (8)

where P{·} denotes the principal eigenvector of the matrix between
braces. β can be chosen such that ‖a0‖2 = ‖Hb0‖2 = N . Note
that β does not affect the array output signal-to-interference-plus-
noise ratio (SINR). The matrix G is defined as

G = P⊥
AI

H (9)

where P⊥
AI

= I−AI(A
H
I AI)

−1AH
I stands for the projection op-

erator onto the complement subspace of 〈AI〉. The problem in (8) is
that the perfect knowledge of the IS is required for its implementa-
tion. In many practical applications, unfortunately, this assumption
is not always valid or the IS cannot be estimated easily.

In [4], a generalized sidelobe canceller (GSC) structured MDB
is presented. Initially, an error covariance is formed by

Ree =
(
HHR−1HH

)−1

(10)

where the columns of H are required to be orthonormal columns.
For the general H the Gram-Schmidt algorithm [9] may be used to
render the columns of H orthonormal. In the presence of one inter-
ference signal only, the error covariance becomes [4]

Ree = σ2
0b0b

H
0 + ηHHa1a

H
1 H+ σ2

nI (11)

where η =
σ2
1σ

2
n

σ2
n+σ2

1a
H
1 P⊥

H
a1

represents the level how the interference

is suppressed by the GSC beamformer. We can see that b0 can be
approximated by the principal eigenvector of Ree up to a scaling
factor if the value of η is sufficiently small. This implies that the
interference manifold a1 is far from the subspace 〈H〉 and therefore
the interference is ideally suppressed by the GSC. However, when a1

is relatively close to 〈H〉 and thus η becomes a significant number,
then the effects of the interferences on Ree cannot be neglected any

more. The immediate consequence is that the principal eigenvec-
tor contains significant contributions from the interferences. On the
other hand, the SOI contributes not only to the principal eigenvector
but also the other dominant eigenvectors. In order to deal with this
situation, [4] suggests that, instead of one eigenvector, a set of domi-
nant eigenvectors of Ree should be utilized to restore the SOI, which
is the so-called multirank minimum variance distortionless response
(MVDR) beamforming. Nevertheless all the dominant eigenvectors
of Ree are contaminated by the interferences in such case.

3. PROPOSED MATCHED DIRECTION BEAMFORMER

Performing eigen-decomposition on R yields:

R =
N∑
i=1

λieie
H
i =

M+1∑
i=1

λieie
H
i +

N∑
i=M+2

λieie
H
i (12)

where λi is the ith largest eigenvalue and ei denotes the asso-
ciated eigenvector. The M + 1 dominant eigenvectors Es =[
e1 . . . eM+1

]
, associated with the largest M + 1 eigenval-

ues, are referred to as the signal-subspace eigenvectors. The rest
eigenvectors En =

[
eM+2 . . . eN

]
are referred to as the noise-

subspace eigenvectors. Next we will develop an estimator of b0

without recourse to the IS.

Firstly a matrix A� is formed by all the M + 1 dominant eigen-
vectors except e� (where � ∈ [1,M + 1]), i.e.,

A� = [e1, . . . , e�−1, e�+1, . . . , eM+1] (13)

Then a matrix U is defined as

U = P⊥
A�

H (14)

We can rewritten e� as follows:

e� =
e�(e

H
� e�)

−1eH
� a0

eH
� a0

=
Pe�a0

eH
� a0

(15)

where the fact (eH
� e�)

−1 = 1 is used in the above. The notation
PA = A(AHA)−1AH stands for the projection operator onto the
subspace 〈A〉. e� is the combination of the manifold vectors of the
SOI and all the interferences and therefore the inequality eH

� a0 �= 0
holds. Denoting the projection onto the noise-subspace 〈En〉 by Pn

(i.e., Pn = En(E
H
n En)

−1EH
n ), we have

Pna0 = 0

Pe� +PA� +Pn = I (16)

Then pre-multiplying (15) by UH produces

UHe� =
1

eH
� a0

UH (I−PA� −Pn)a0

=
1

eH
� a0

(
UHa0 −UHPA�a0

)

=
1

eH
� a0

(
UHa0 −HHP⊥

A�
PA�a0

)

=
1

eH
� a0

UHa0 (17)

where the properties of P⊥
A�

= (P⊥
A�

)H and P⊥
A�

PA� = 0 are

used in the above. Finally, we pre-multiply (17) by (UHU)−1 and
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insert (3) to obtain

(UHU)−1UHe�

=
1

eH
� a0

(UHU)−1UHa0

=
1

eH
� a0

(UHU)−1HHP⊥
A�

Hb0

=
1

eH
� a0

(UHU)−1HHP⊥
A�

P⊥
A�

Hb0

=
1

eH
� a0

(UHU)−1UHUb0

=
1

eH
� a0

b0 (18)

where the idempotent property of projection operator P⊥
A�

=

P⊥
A�

P⊥
A�

is utilized. It is obvious that the vector b0 can be es-
timated by

b0 = β(UHU)−1UHe� = βU†e� (19)

where U† = (UHU)−1UH denotes the pseudo-inverse of U. The
proposed weight vector for the MDB can be constructed as

wprop = βR−1Hb0 = βR−1HU†e� (20)

which is a Capon-type beamformer.
Remark 1: The assumption made in this paper is that the signal-

subspace eigenvectors [e1, . . . , eM+1] are available, which is a quite
weak assumption compared with that in [3] where it assumes that the
IS, 〈AI〉, is perfectly known.

Remark 2: From (19), we observe that the proposed estimator
is not related to the interference manifold vectors and therefore, the-
oretically, provides accurate estimation even when the interference
signals are very close to the SOI. In comparison, the estimator of
(11) in [4] is sensitive to the interferences close to the SOI.

Here we discuss two factors that are possible to restrict the accu-
racy of the estimator in (19). In practice, the covariance matrix R is
estimated by (2). If the number of snapshots acquired by the array is

quite small, the orthogonality between P̂n and a0 may be impaired

due to the effect of finite snapshots, which leads to P̂na0 �= 0. An-
other factor is that the manifold vector a0 is not completely located
in the subspace 〈H〉. In the example of look direction error (see (4)
and (5)), for instance, H is formed by discarding the higher orders.
In such case, the actual manifold may be modeled as

a0 = Hb0 +Δ0 (21)

where b0 = H†a0. Taking the effect of finite snapshots into account

and inserting (21) into (17) and then (18), the estimated b̂0 becomes

b̂0 = β
(
b0 + Û†Δ0 − Û†P̂na0

)
(22)

Remark 3: Consider the case when the signal-subspace dimen-

sion (M + 1) is overestimated. The projector P̂n with reduced-
dimension is still orthogonal to a0, which implies that the estima-
tor in (19) still works. Therefore the proposed method is robust to
the overestimation of the signal-subspace dimension. If the signal-
subspace dimension is underestimated, the estimated noise subspace
containing the signal eigenvector(s) will have the SOI component,

meaning that P̂n is not orthogonal with a0. Hence the proposed
method fails in the case of underestimation.

Remark 4: In [4, 10], the situation where the coordinate vector
b0 is not constant but random during the K snapshot observation

time due to the fast varying environment has been considered. Con-
sequently the time-varying coordinate vector is modeled as b0(t)
and the contribution due to the SOI is given by

R0 = σ2
0HRbbH (23)

where Rbb = E{b0(t)b
H
0 (t)} is a full rank matrix (rank-p). In

[4] only the simple case with known Rbb is studied. Using Corol-
lary VI.2 of [10] one can estimate the rank-p matrix R0 without the
knowledge of Rbb. However, this approach cannot be employed in
the scenario of this paper. This is because that when using Corollary
VI.2 of [10], Rbb is required to be full rank such that its inversion
R−1

bb exists. Nevertheless, in this paper we assume the coordinate
vector b0 keeps unchanged during the K snapshot observation time,
and therefore the matrix Rbb = b0b

H
0 is rank-1 and not invertible.

4. SIMULATION STUDIES

In order to evaluate the effectiveness of the proposed MDB, three
simulation studies have been carried out using a uniform linear
array with N = 10 sensors and half-wavelength sensor spacing.
The array operates in the presence of three equally-powered source
signals where one is the SOI and two are interferences. It is as-
sumed −3◦ pointing error in the SOI direction with the actual
DOA θ0 = 0◦ and the nominal DOA θ0 = −3◦. The matrix H
is obtained by performing Gram-Schmidt algorithm on the matrix[
a(θ0) a(θ0 −Δθ) a(θ0 +Δθ)

]
where we set Δθ = 2◦. The

input signal-to-noise ratio (SNR) is 0dB. The DOA of the first inter-
ference signal is fixed at 20◦ throughout all the following examples.
The three MDB algorithms simulated are: 1) the multirank MV-
DR where b0 is obtained by computing the principal eigenvector
of Ree in (10), 2) the MDB proposed in [3] (see (8)) where the
perfect knowledge of the IS is assumed to be known a priori, 3)
the proposed method where without loss of generality we choose
� = 1. The weight vectors of these three MDB beamformer can be

uniformly expressed as ŵ = R̂−1Hb̂0.
In the first example, the DOA of the second interference sig-

nal varies from −15◦ to −5◦. The array output SINR performances
of these methods versus the DOA of the second interference are dis-
played in Fig. 1. Compared with the multirank MVDR, Fig. 1 shows
that the second interference has to be closer to the SOI before it lead-
s to a SINR deterioration for the proposed method. In other words,
the multirank MVDR method is more sensitive to the relatively close
interference(s) than the other two methods.

Next, the robustness of the proposed algorithm to the overesti-
mation or underestimation of the signal-subspace dimension is ex-
amined. The nominal signal-subspace dimension is changed from 1
to 9, while the actual dimension is 3. Fig. 2 illustrates that the SIN-
R performance of the proposed method maintains when the nominal
dimension is between 3 and 8. The proposed approach fails when the
nominal dimension is underestimated (where the nominal dimension
is 1 or 2) because the estimated P̂n contains the signal component

which leads to P̂na0 �= 0. When the nominal dimension is above
8, the proposed approach also fails which can be explained by the
following fact. If the rank of the matrix A� in (13) is over 8, then
the rank of P⊥

A�
is N − 8 = 2. Thus the rank of the matrix product

U = P⊥
A�

H is not greater than 2. Therefore the 3×3 matrix UHU
becomes rank deficient and non-invertible.

Finally the effect of finite snapshots is investigated. The covari-
ance matrix R is estimated by using (2). The dimension of the signal
subspace is 3. All other parameters are the same as that in the second
example. The average of 500 independent simulation runs is used to
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plot each simulation point in Fig. 3. The three methods converge
to the steady values when the snapshot number is over 400. Also,
Fig.3 indicates that the proposed method is better than the multirank
MVDR.
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Fig. 1. Array output SINR versus the azimuth of the second interfer-
ence; the first example.
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Fig. 2. Array output SINR versus the nominal signal-subspace di-
mension; the second example.

5. CONCLUSIONS

The unknown actual manifold vector is modeled as a vector lying in
a known subspace. The main contribution of this paper is that we
develop an estimator of the coordinate vector without the knowledge
of the interference subspace. This means that the condition with the
perfect knowledge of interference subspace in [3] may be relaxed.
Instead, the proposed estimator takes use of the signal subspace
which can be easily obtained by performing eigen-decomposition
on the covariance matrix. Another advantage of the proposed ap-
proach is the robustness to the signal dimension overestimation.
Simulations reveal that the proposed MDB achieves the similar per-
formance to that with perfect knowledge of interference knowledge,
and outperforms the multirank MVDR proposed in [4] in the situ-
ation when the interference is relatively close to the SOI. A future
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Fig. 3. Array output SINR versus the snapshot number; the third
example.

direction of research consists of improving the coordinate vector
estimator in the case of small snapshot number.
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