
ABSTRACT 
 
Many radar and communication systems utilize phased antenna 
arrays where it is desirable to maintain low-sidelobes even when 
one or more individual antenna elements have failed. Traditionally, 
computing low-sidelobe beamforming with disabled elements 
requires accurate antenna element patterns. In this paper we 
present a new algorithm for computing low-sidelobe beamforming 
that only requires the original beamforming weights that produce 
low sidelobes when all elements are functioning normally. The 
algorithm is computationally inexpensive, does not require 
accurate knowledge of the antenna element patterns, and permits 
user adjustment of the trade-off between sidelobe level, taper loss, 
and mainbeam width. Near optimum low sidelobes are 
demonstrated in several examples. 
 

Index Terms— Array signal processing, beams, linear algebra, 
phased arrays. 
 

1. INTRODUCTION
 
For many applications, low spatial sidelobes are required, and it is 
desirable to maintain these low sidelobes despite the failure of one 
or more antenna elements. Usually the antenna element patterns 
are calibrated sufficiently to compute a low spatial sidelobe pattern 
despite the failure of several elements, as described in References 
[1-8]. For this paper it is assumed that one knows the low sidelobe 
beamformers with no failed elements but antenna element patterns 
are not calibrated well enough to use the referenced techniques. 
Nothing has been found in the literature for this problem. 

Specifically, consider an  element phased array and the 
following length  vectors. We assume the following are KNOWN 
and UNKNOWN and all vectors except for  are unit normed. 

UNKNOWN 
: true steering vector to angle   

: antenna calibration errors, which are large 
KNOWN 

 : assumed 
steering vector  

: low sidelobe beamformer, where the inner product 
is small for  in the sidelobe region 

The low sidelobe beamformer with failed elements is based 
exclusively upon the KNOWN vectors and is a linear combination 
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of the . The reader may be wondering how the  could 
have been determined in the first place.  An example will be the 
subject of a future paper in which an airborne radar’s digitally 
controlled analog beamformer is iteratively adjusted in flight until 
the sidelobe clutter power is minimized thereby forming a low 
sidelobe antenna pattern without accurately knowing the individual 
antenna patterns. 

The failed element correction method will be shown to achieve 
a near optimal solution even if the antenna patterns are accurately 
known. Thus for some systems, in particular where a rapid 
recalculation of the beamfomer with failed elements is required, it 
may be preferable to use this method even if  is accurately 
known. 

 
2. FAILED ELEMENT ALGORITHM 

 
Fig. 1 shows a digitally controlled beamformer applied to the  
element array to produce a single  beam. If elements are 
digitized the beamformer is digital otherwise it is analog.

Fig. 1.  Beamformer block diagram. 
 
2.1. Beamformer with good antenna calibration 
 
We start by describing a procedure that could be used with good 
antenna calibration. Let  be the angle of interest. To the extent 
permitted by the antenna calibration errors, we could compute a 
low sidelobe beamformer by letting  be a modeled covariance 
matrix with sidelobe interference. The low sidelobe beamformer 
with no failed elements is 

   

 ]                                               (1)  

  

where  is an identity matrix representing the thermal noise,   
is the modeled interference covariance with no noise,  controls 
the mixture of modeled interference to thermal noise,  is the 
width of the mainlobe,   is the number of terms in the sum,   is a 
normalizing scale factor, and  H is Hermitian transpose. 

With failed elements the above equations can be modified to 
delete the rows and columns of  and  corresponding to 
the location of the failed elements. However, with or without failed 
elements, the procedure will fail to achieve low sidelobes if the 
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antenna calibration errors are large. The next section describes how 
to overcome the antenna calibration limitations. 

 
2.2. Beamformer with constraints 
 

 

Fig. 2. Beamformer properties in an n dimensional space.

Here we constrain the above solution to a reduced dimension 
vector space in order to overcome the calibration errors. Let  be 
a matrix whose columns are   low sidelobe beamformers 
surrounding the direction  of interest. These should be closely 
spaced (less than a beamwidth) and preferably include   as a 
column.  As illustrated in Fig. 2 representing an n dimensional 
vector space, all of these beamformers have low sidelobes.  

We constrain the solution to this vector space as follows. Let 
 be the number of failed elements and   

be a vector for the locations of the failed elements. Within the 
space spanned by  is a subspace  of dimension  where 
all vectors in  have a 0 at the locations of the failed elements. 
We compute this subspace as follows. Using MATLAB notation, 

is a  matrix of only the rows of  with failed 
elements. The  matrix  is an orthonormal 
basis for the null space of  obtained from the singular 
value decomposition.  That is,   is a 

 matrix of 0s and thus  

                                            (2) 

is an  matrix with 0s along the rows corresponding to 
the location of the  failed elements. The subspace spanned by the 
columns of   is . We constrain the solution to , thereby 
modifying (1) as follows 

                                  (3) 

          . 

If  is approximately known, but not necessarily with 
perfect accuracy, then  it may be used here. However, for the cases 
of interest we will assume that the calibration errors are too large 
to provide a good estimate of , and instead we will 
approximate  where  is the average sidelobe level 
achieved by the beamforms in . It can be mathematically  
shown, but is beyond the scope of this paper, that this is a good 

approximation for this application and enables an accurate estimate 
of the achieved sidelobes when choosing parameters in the next 
section. Furthermore the examples verify this. Thus 

                    (4) 

where in this transformed space  is the correlated thermal 
noise and  is the interference covariance estimate. Since  is a 
factor making  unit norm, we can drop  and replace  and  
by  and  where  is a normalizing factor and  . 

 .                     (5) 

In choosing parameters  and  it is useful to have an estimate 
for the change in the taper loss and average sidelobes. Unless the 
calibration errors are extremely large a good taper loss estimate in 
dB is   where  and 

 are unit normed. To estimate the average sidelobes we can 
rewrite  where  is the  vector of coefficients for 
combining the columns of . Recalling that  is the average 
sidelobe level estimate with no failed elements we can estimate the 
change in the average sidelobe as 

 
 

 .                  
 
2.3. Choosing parameters  and 
 
As before,  in (5) controls the mixture of modeled interference to 
thermal noise. Constrained by  to the chosen vector space,  
is the matched filter and  is the colored noise matched filter 
to reduce sidelobes. Stated differently for  this is a projection 
onto the space spanned by the columns of . Thus  has the 
best taper loss but the highest sidelobes. As  increases, the taper 
loss monotonically degrades and the sidelobes improve.  has 
the effect of regularizing the matrix  by reducing the 
contribution the eigenvectors corresponding to the small 
eigenvalues of . These monotonicity properties are very useful 
for the procedure.  

The procedure is flow charted in Fig. 3 in which values for  
and   are found such that   and the taper 
loss, , is lower bounded by TLbound. (Note:  
means unchanged sidelobes and  is negative.) Finding  in 
the interval  is simplified by the monotonicity discussed above 
for the function in (5).  

For unrealistic goals, K may continue to increase to an 
unacceptably large value and a solution may not be found. In this 
case the goals should be reset and the procedure repeated. 

The procedure is easily modified to have  and 
. 

 
3. EXAMPLES 

 
Near optimum performance has been demonstrated with one- and 
two-dimensional arrays as illustrated by these examples. 

The authors feel it is important that the validity of algorithms be 
tested under real-world conditions. Specifically, we test the 
procedure using a perfect uniform linear array as the assumed 
steering vectors, , but the true steering vectors, ,  
having small perturbations from the perfect uniform linear array. 
These perturbations, , are independent from element to 
element, and change slowly with angle. The calibrations errors 
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Fig. 3. Procedure for choosing parameters. 
 
limit the achievable beamformer sidelobes based solely upon the 
assumed array calibration to -30 dB with or without failed 
elements. Even with perfect array calibration knowledge, the angle 
dependent element pattern differences limit the best sidelobes to 
about -51 dB. However, we will assume that the beamforming 
weight vectors,  to achieve -50 dB sidelobes with no failed 
elements are available. The beams in  are spaced by a half 
beamwidth.  

Fig. 4 shows the antenna patterns with various combinations of 
failed elements [none], [15], [15,32,53] without any correction in a 
64 element linear array. The taper loss numbers are relative to the 
true steering vectors,   

Fig. 5 shows the resulting corrected patterns with element [15] 
failure to yield unchanged sidelobes,  and 

. The relevant parameters , , and taper loss 
are indicated. Notice the taper loss is better than the bound. In 
order to evaluate the performance of the correction algorithm, we 
include a comparison with an optimum approach using (1), 

 and  selected to maintain the sidelobe levels at 
 and  chosen to be the angular width of the  beams in 

the algorithm. Notice that the algorithm and optimum patterns 
virtually overlay with taper losses within a tenth of a dB. All 
patterns have the same sidelobe levels but the corrected patterns 
have a slightly wider mainlobe. 

Fig. 6 repeats the previous example with three failed elements, 
[15,32,53], and similar agreement is achieved between the 
algorithm and optimum. The high first sidelobe is primarily due to 
deleting an element in the middle of the array. 

Figs. 7 and 8 illustrate a two-dimensional 16 x 16 element array. 
Again the calibration errors are independent from element to 
element and change slowly with angle. Fig. 7 illustrates the pattern 
with no failed elements and Fig. 8 after correction with two failed 
elements [4,8] and [8,12], again using  and 

. In the 2D case neighboring beams are taken 
in groupings that extend symmetrically in both  and 

 space. The choice  used here corresponds to a 
diamond-shaped grouping of beams centered around the beam to 
be corrected.  

 
 
 
 

 

Fig. 4.  Uncorrected antenna patterns with failed elements in a 64 
element linear array.

 

Fig. 5.  Corrected antenna patterns with failed element 15.

 
Fig. 6. Corrected antenna patterns with failed elements 
15, 32, and 53. 
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Fig. 7. Low sidelobe pattern for a 16 x 16 array.

 

 
Fig. 8. Corrected pattern with two failed elements                     
[4,8] and [8,12]. 

 
4. PULSE-DOPPLER RADAR APPLICATION 

 
As is frequently the case, techniques developed in either the spatial 
or the temporal domain frequently find application in the other 
domain. Consider a pulse-Doppler radar in which one or more 
pulses are severely interfered with but low Doppler sidelobes are 
needed with these pulses dropped. Mathematically, the missing 
pulses replace the failed elements, and the Doppler filters replace 
the low sidelobe beamformers. The techniques in this paper offer a 
rapid and predicable outcome for taper losses and Doppler sidelobe 
level. Since here calibration is likely not to be an issue, it may be 
preferable to use (3) instead of the approximation in (5) for the 
covariance matrix. Furthermore, since calibration is not an issue, 
the techniques in the literature are also applicable but may be more 
computationally intense with little added benefit.  

Similarly temporal samples in the range domain may be 
interfered with and low range sidelobes are needed even with these 
dropped samples. Mathematically the pulse compression filter 
replaces the low sidelobe beamformers.  
 
 

5. SUMMARY 
 
Given that the original low-sidelobe beamformers are available but 
antenna calibration data to the corresponding level of accuracy are 
not, a natural approach is to form the corrected beams as linear 
combinations of the original beams. We observed that linear 
combinations of  these beams had a 0 at the location of the failed 
elements and we constrained the solution to this vector space, . 
To choose the parameters  and  we derived an approximation 
for the change in sidelobe level as . Since we have measures 
for the change in sidelobe level, taper loss, and mainbeam region, 
we can find an optimal set of parameters to satisfy these 
conditions. We have thus demonstrated a robust method for 
calculating a low sidelobe beamformer with failed elements where 
we can control the achieved sidelobe levels, the taper loss, or the 
width of the mainbeam region.  

The approach is also applicable to forming beams with no failed 
elements to reduce taper losses by raising the sidelobes. Also 
discussed was the application of the algorithm in pulse-Doppler 
radars for missing pulses or missing range samples with the goal of 
maintaining low Doppler sidelobes or range sidelobes. 

The method has been shown to be near optimal and thus may 
find application even for systems with good antenna calibration. 
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