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ABSTRACT

A pre-processing technique is developed to track a polynomial-

phase signal using an electromagnetic vector-sensor, which

can be collocated or spatially-spread. The performance of the

single-forgetting-factor algorithm incorporating the proposed

pre-processing approach is improved significantly, and it even

surpasses the performance of the multiple-forgetting-factor

algorithm in a polynomial-phase source scenario. Simulation

results verify the efficacy of the proposed technique.

Index Terms— Antenna arrays, radar tracking, direction

of arrival estimation, FM radar.

1. INTRODUCTION

This paper develops a pre-processing technique to enhance

the source-tracking performance in a polynomial-phase source

scenario using a single vector-sensor. The proposed approach

is based on the following facts: 1) The “vector-cross-product”

algorithm inspired by the Poynting theorem is used for

source-tracking using a single electromagnetic vector-sensor;

2) The q-order difference-function of a q-order polynomial-

phase signal’s phase is a constant.

The polynomial phase-signal can be completely polar-

ized, partially polarized or unpolarized, and the electromag-

netic vector-sensor can be collocated or spatially-spread. The

proposed approach has been used for direction-finding and

polarization estimation with a single polarized vector-sensor

in [1].

1.1. “Vector-Cross-Product” Based Source-Tracking with
an Electromagnetic Vector-Sensor

An electromagnetic vector-sensor comprises a dipole triad

and a loop triad. The dipole triad is composed of three

orthogonally-collocated dipoles which are used to measure

the three components of the signal’s electric field, and the

loop triad is composed of three orthogonally-collocated loops

which are used to measure the three components of the sig-

nal’s magnetic field. Since the electromagnetic vector-sensor

can measure both the electric field and the magnetic field

of the source, the Poynting vector can be derived from the

vector-cross-product of the measurements for the two fields.

This vector-cross-product algorithm has been investigated

extensively for direction-finding in [2–4]. These dipoles and

loops, even spatially-spread [5, 6] (satisfying some condi-

tions), can also be used to estimate the Poynting vector of the

source.

This vector-cross-product approach has been investigated

for source-tracking in [7]. The advantages of the source-

tracking algorithm proposed in [7] are summarized as fol-

lows: 1) It can be used for various types of the sources and it

is independent of the source’s frequency-spectrum. It can be

used for both the completely/partially polarized signal and the

unpolarized signal. 2) It has a low computational complexity.

3) Only a single vector-sensor is sufficient to track the source.

1.2. Polynomial Phase Signal

The polynomial-phase signal (PPS) has wide applications in

radar, sonar and communication systems. Different signals

are used in these systems with the phase as a continuous func-

tion of time. This function on a closed interval can be approx-

imated by polynomials from the Weierstrass theorem [8]. The

polynomial-phase signal can be modeled in continuous time

as:

s(t;ψ) =
√
P exp{j ϕ(t;ψ)}, (1)

ϕ(t;ψ) = b0 + b1t+ b2t
2 + · · ·+ bqt

q, (2)

where ψ = (b0, b1, · · · , bq)T is a vector that contains the

parameters in the polynomial phase ϕ(t;ψ), with b� (� =
0, 1, 2, · · · , q) symbolizing the �-order coefficient, T denotes

transposition, and q is the degree of the polynomial-phase sig-

nal. The initial phase of the polynomial-phase signal is b0,

and the power is P .

It is notable that the phase of the signal, ϕ(t;ψ), is a

q-order polynomial of t. The q-order difference of ϕ(t;ψ)
is thus a constant. Based on this property of the polynomial-

phase signal and in order to extract the relationship in

the adjacent measurement data vectors, we develop a pre-

processing approach to enhance the efficacy of the source-

tracking algorithm proposed in [7]. The following derivation

will be based on the single-forgetting-factor (SFF) algorithm

in order to save the computation workload.
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2. MEASUREMENT MODEL

When the source is moving, the direction-of-arrival and po-

larization of the source will be time-varying. With (θ, φ) to

denote the elevation-angle and azimuth-angle of the source,

(γ, η) to denote the polarization parameters of the source [9],

the array-manifold of the moving source can be shown as:

a(t)
def
=

[
e(t)
h(t)

]
def
=

⎡
⎢⎢⎢⎢⎢⎢⎣

ex(θ(t), φ(t), γ(t), η(t))
ey(θ(t), φ(t), γ(t), η(t))
ez(θ(t), φ(t), γ(t), η(t))
hx(θ(t), φ(t), γ(t), η(t))
hy(θ(t), φ(t), γ(t), η(t))
hz(θ(t), φ(t), γ(t), η(t))

⎤
⎥⎥⎥⎥⎥⎥⎦
.

1 From the vector-cross-product, the Poynting vector:

p(t) =
e(t)× h∗(t)
‖e(t)× h∗(t)‖ =

⎡
⎣ sin θ(t) cosφ(t)

sin θ(t) sinφ(t)
cos θ(t)

⎤
⎦ (3)

def
= [u(t) v(t) w(t)]

T
, (4)

where × denotes the vector-cross operation, ∗ symbolizes the

complex conjugation, ‖·‖ represents the Frobenius norm, and
T denotes the transposition.

The collected data-set at time t of the vector-sensor is:

y(t) = a(t)s(t;ψ) + n(t)
def
=

[
ye(t)
yh(t)

]
, (5)

where n(t) is the 6× 1 additive noise vector.

3. PROPOSED TECHNIQUE

Thanks to the vector-cross-product result in (3), the elevation-

azimuth angle of the source can be estimated straightfor-

wardly. The target of the source-tracking is to estimate the

accurate p(t), (then the accurate arriving-angle) from the

collected data set in (5).

3.1. Review the SFF Algorithm in [7]

Using an exponential window with a forgetting factor λ, the

Poynting vector can be estimated by [7]:

p̂N =

1∑N
n=1 λ−n

∑N
n=1 λ

−nRe{ye(t)× y∗
h(t)}∥∥∥ 1∑N

n=1 λ−n

∑N
n=1 λ

−nRe{ye(t)× y∗
h(t)}

∥∥∥
def
= [ûN , v̂N , ŵN ]

T
, (6)

where Re{·} denotes the real-part of the complex number in

{·}. The direction-of-arrival (DOA) of the source can then

be estimated by: θ̂N = arccos(ŵN ), φ̂N = ∠(ûN + jv̂N ),
where ∠ denotes the complex angle of the ensuing number.

1For the entities in the array-manifold a, please refer to [6, 9, 10].

The aim of this paper is to estimate the p̂N more precisely,

from the collected data-vector in (5) in a polynomial-phase

source scenario. The following will show how and why.

3.2. The Pre-Processing Technique

With Ts to denote the sampling time-interval, consider there

are M time samples. The collected 6×M data set will be:

Y = [y(Ts),y(2Ts), · · · ,y(MTs)] , (7)

where y(mTs) = a(mTs)s(mTs,ψ) + n(mTs), ∀m =
1, 2, · · · ,M . In order to simplify the exposition, consider the

noiseless case in the following derivation. Let x(q)(t) = y(t)
and this x(q)(t) is then a 6 × 1 vector. Let xi,q(t) be the

ith row of x(q)(t), ∀i = 1, 2, · · · , 6. Perform the following

recursive computations in the box:

1) For the collected data-vector at time t,

x(q−1)(t) = x(q)(t)x
∗
i,q(t+ Ts). (8)

2) Repeat step 1) for q = q−1 until x(0)(t) is reached.

For a q-order PPS, in total there are q times recursive com-

putations of step 1). For each recursive computation for step

1), the number of data-vector in Y will decrease one. We

presume the DOA and the polarization of the PPS remain the

same during the sequential (q + 1)Ts time-intervals. By the

described computations above, the first (q + 1) data-vector

in (7), [y(Ts),y(2Ts), · · · ,y((q + 1)Ts)] will carry out one

6× 1 data-vector:

z(Ts) = x(0)(Ts) = ã(Ts)e
j(−1)qbq(q!)T

q
s , (9)

ã(Ts)
def
= a(Ts)

(
|[a(Ts)]i|(2(q−1)−1)[a(Ts)]

∗
i

)
, (10)

where [a]i symbolizes the ith element of the vector in [ ].
Similarly, from any (q + 1) contiguous data vectors in (7),

[y(nTs),y((n+ 1)Ts), · · · ,y((n+ q)Ts)], we can obtain:

z(nTs) = ã(nTs)e
j(−1)qbq(q!)T

q
s (11)

def
=

[
zTe (nTs), z

T
h (nTs)

]T
, ∀n = 1, · · · , (M − q).

In the noisy case, (9)-(11) will become approximated.

It is worth noting that z(nTs) is now independent of the

signal model, and ej(−1)qbq(q!)T
q
s is a constant and only de-

pends on: 1) the sampling time-interval Ts, 2) the order of

the polynomial-phase signal q, and 3) the highest order coef-

ficient bq , all of which are time independent. The z(nTs) can

then be seen as a complex number c
def
= ej(−1)qbq(q!)T

q
s , multi-

plying the modified time-varying array-manifold ã(nTs), and

this c is a constant. Hence, through the above processing, the

source-tracking performance will be independent of the sig-

nal model and only depends on the noise. This is the issue

investigated in [7].
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The following problem is to adaptively estimate p(nTs)
over n = 1, 2, · · · , (M−q), from [z(Ts), z(2Ts), · · · , z((M−
q)Ts)]. The single-forgetting-factor (SFF) algorithm re-

viewed in Section 3.1 and the multiple-forgetting-factor

(MFF) algorithm in [7] can be adopted to track the source.

For the SFF algorithm:

ˆ̃p(nTs) =
Re{ze(nTs)× z∗h(nTs)}
‖Re{ze(nTs)× z∗h(nTs)}‖ , (12)

ˆ̃pN =

∑N
n=0 λ

−n ˆ̃p(nTs)∑N
n=0 λ

−n
. (13)

The following recursive relation is obtained:

ˆ̃p(nTs) = λˆ̃p(nTs − Ts) + (1− λ)ˆ̃p(nTs), (14)

∀n = 1, 2, · · · , N.

Then using this ˆ̃p(nTs) in (14) to replace the p̂N in (6) to es-

timate the DOA of the source will improve the tracking per-

formance.

Remarks:

• In (8), step 1) to compute x(0)(t), any one row in

x(q)(t) can be used. This does not affect the following

derivation. In cases when any one row is equal to zero,

we can use any other nonzero entity.

• (8) in step 1) can be changed to:

x(q−1)(t) =

6∑
i=1

x(q)(t)x
∗
i,q(t+ Ts). (15)

Though (15) will increase the computation workload, it

has the following advantages: a) preserving the signal,

b) enhancing the noise cancelation, and c) avoiding the

case when one row in x(q)(t) is equal to zero.

• For the MFF tracking approach in [7], the described

pre-processing technique can also be adopted.

• The pre-processing technique proposed in this work

and the tracking approaches proposed in [7] can be

synergized with a Kalman filter to improve the tracking

performance [7, 10, 11].

4. SIMULATION

The efficacy of the proposed approach is demonstrated by

Monte Carlo simulations. A second-order unity-power

polynomial-phase signal (a.k.a. an LFM or a Chirp sig-

nal) is used with {b0 = 0.05, b1 = 0.1, b2 = 0.13} im-

pinging on an electromagnetic vector-sensor. The polar-

ization of the signal is (γ = π/4, η = π/2). Figure 1

plots the moving loci of the elevation-angle and the azimuth

angle. The angular errors of the arriving-angle (θr, φr)
are also plotted (the signal-to-noise ratio is set as 20dB).

Both the tracking results of SFF algorithm with and with-

out incorporating the proposed pre-processing technique

are presented. Figure 2 plots the corresponding results

with a 4-order unity-power polynomial-phase signal with

{b0 = 0.05, b0 = 0.1, b2 = 0.13, b3 = 0.23, b4 = 0.29}.

It can be seen clearly that the SFF algorithm incorporating

the proposed technique outperforms its counterpart without

incorporating the proposed technique. Figure 3 plots the cor-

responding results of a 2-order polynomial-phase signal with

the MFF algorithm by setting λ1 = 0.9, λ2 = 0.8, λ3 = 0.7.

Table 1 summarizes the mean-values and standard-deviations

of angular errors (θr, φr) with different source-tracking meth-

ods in the 2-order polynomial-phase signal scenario as in Fig-

ure 1. (For the meanings of λ1, λ2, λ3 of the MFF algorithm

in Table 1, please refer to [7].) From the simulation results,

it can be seen that with the proposed technique, the source

tracking performance can be improved substantially with a

lower computational complexity because the performance of

the SFF approach outperforms the performance of the MFF

approach. For the comparison of the computation workload

between the SFF and the MFF methods, please refer to [7].

In addition, the standard-deviations of (θr, φr) with SFF

algorithm decline when λ increases.

It is worth pointing out that the SFF and MFF algorithms

can be used for arbitrary signal-model, but the proposed pre-

processing technique can only be used in a polynomial-phase

source scenario as discussed in this paper.
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Fig. 1: SFF source-tracking of a 2-order polynomial-phase

signal with λ = 0.8.

5. CONCLUSION

A pre-processing technique is proposed to improve the

source-tracking performance in a polynomial-phase signal

scenario using a single electromagnetic vector sensor. This

approach incorporating the SFF algorithm can offer a better

performance than the MFF algorithm with a lower computa-

tion workload.
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Table 1: Mean-Values and Standard-Deviations of (θr, φr) (in degree) of a 2-order Polynomial-Phase Signal

λ1(λ) λ2 λ3 Mean of θr Std. Dev. of θr Mean of φr Std. Dev. of φr

MFF without the proposed technique 0.9 0.8 0.7 0.045 3.707 0.0141 4.697
MFF with the proposed technique 0.9 0.8 0.7 −0.134 1.232 −0.0412 1.759

SFF without the proposed technique 0.9 − − 0.118 7.341 0.493 10.657
SFF with the proposed technique 0.9 − − −0.314 3.596 0.422 4.180
SFF without the proposed technique 0.8 − − 0.229 5.751 0.711 10.082
SFF with the proposed technique 0.8 − − −0.110 1.782 0.168 2.103
SFF without the proposed technique 0.7 − − 0.107 3.581 0.052 4.847
SFF with the proposed technique 0.7 − − −0.035 1.223 0.072 1.480
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Fig. 2: SFF source-tracking of a 4-order polynomial-phase

signal with λ = 0.8.
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