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ABSTRACT

This paper presents a new direction-of-arrival (DOA) 
estimation method using the concept of sparse 
representation of an array cross-correlation vector (ACCV), 
in which DOA estimation is achieved by finding the sparse 
parameter vector according to an optimization criterion. 
 Compared with other sparse recovery algorithms the 
proposed method achieves a higher resolution and has a less 
computational complexity. The performance of our method 
is demonstrated and analyzed through numerical simulations. 

Index Terms— Direction-of-arrival, multiple 
measurement vectors, array cross-correlation vector, sparse 
recovery. 

1. INTRODUCTION 

Direction-of-arrival (DOA) estimation has always been used 
in an active research area, playing an important role in many 
applications, such as microphone array systems, sonar 
systems, and mobile communication systems [1]. Recently, 
sparse-representation-based DOA estimation methods, such 
as [2]-[6], provide another interpretation of array data and 
achieve DOA estimation by finding the sparsest 
representation of the data.  

Gorodnitsky et al. used a recursive weighted least-
squares algorithm called FOCUSS [2] to estimate DOA in 
the single snapshot case only, while its multiple 
measurement vectors (MMV) version was M-FOCUSS [3]. 
Another algorithm, called the singular value decomposition 
( -SVD) [4], can work with MMV by applying singular 
value decomposition (SVD) to reduce the computational 
complexity, however, it still requires solving a joint-sparse 
recovery problem involving 

1�

K measurement vectors ( K is
the number of signals). Another algorithms is JLZA-DOA 
[5] proposed by Hyder. The algorithm solves the MMV 
problem by using  approximation approach, in which 2,0�
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the -norm is approximated by a class of Gaussian 
functions. However, the parameters in JLZA-DOA are 
experimental values and the selection of the parameters has 
no guideline in arbitrary experimental situation. One of the 
latest algorithms is SRACV [6] proposed by Yin, in which a 
MMV problem is considered for DOA estimation, thus 
suffering from a high computational complexity.  

0�

In this paper, the scenario of far-field uncorrelated 
narrowband signals impinging on a uniform linear array 
(ULA) corrupted by additive white Gaussian noise is 
considered. Compared with the DOA estimation algorithms 
involving joint-sparse recovery mentioned above, the 
proposed method called -ACCV transforms MMV 
problem into a single measurement vector (SMV) model 
through an array cross-correlation vector (ACCV), thus 
decreasing the computational complexity substantially.  

1�

In this paper, the notations ( ) , , T� *( )� ( )H� , , ( )E � � �� �� ,

0
� ,

1
� ,

2
�  denote transpose, conjugate, conjugate 

transpose, expectation, ceiling operation, -norm, -
norm, -norm, respectively. 

0� 1�

2�

2. SIGNAL MODEL 

Assume that K far-field zero-mean and uncorrelated 
signals ,( )ku t { }1, 2, ,k K�∈  impinge on a ULA of M
omnidirectional sensors corrupted by additive temporally 
and spatially white Gaussian noise , and the m th 
sensor output is 

( )mw t
( )mx t , { }1, 2, ,m M∈ � , K M< . Let 

[ ]1 1, , , Kθ θ θ�� =  be the direction parameter collection and 
 is DOA of signal . In the narrowband and far-field 

case, the array output vector can be represented as 
kθ ( )ku t

, (1) ( ) ( ) ( )t t= +x Au w t
where is a manifold matrix defined as A

[ ]1 2( ), ( ), , ( )Kθ θ θ=A a a a� ,

is the signal vector and  is 
the noise vector at time slot t . The steering vector 

[ ]1 2( ) ( ), ( ), , ( ) T
Kt u t u t u t=u �

[ ]1 2( ) ( ), ( ), , ( ) T
Mt w t w t w t=w �

( )kθa
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corresponding to the k th far-field source for the ULA is 
given by 

, (2) 1( ) = 1, , ,
TM

k k kθ ν ν −� �	 
a �

where . is the signal wavelength and 
 is inter-sensor spacing. 

2 ( / )sin( )kj d
k e π λ θν −= λ

d
The covariance matrix is obtained as the following form: 

{ } , , {1, 2,( ) ( }) , ,H
p qt r ME p qt � �= = 	 
 ∈R x x � . (3) 

Obviously, R is a Hermitian Toeplitz matrix, and its first 
column can be used to reconstruct the whole matrix. 

By using the first row and the first column, an ACCV 
can be defined as 

. (4) 1, 1,2 2,1 ,1, , , ,
T

Mr r r r�  ,  	r � � � M �

From (3) we can represent (4) as 

=r Ap , (5) 
where

[ ]1 2( ), ( ), , ( )Kθ θ θ=A a a a� ,
( 1) 1 1 1( ) , , , ,

TM
k k k k kθ ν ν ν ν− − − −� �= 	 
a � � M

�


,

.
1 2
, , ,

K

T

u u up p p�= 	p �

kup represents the power of . Note that each element 
of is positive and r  is conjugate symmetric. 

( )ku t
p

3. SPARSE SIGNAL REPRESENTATION AND 
RECONSTRUCTION

In the signal model (5), the DOA and the power of each 
signal are concerned, but we cannot derive the matrix A
and the vector p directly from r . To solve this problem, (5) 
is extended to a sparse representation form with an 
overcomplete basis matrix B  and a sparse power vector .s

Let { }1 2, , , Nθ θ θ� � ��  (  ) be a sampling grid of all 

potential of DOAs. Then we can represent (5) as 

N K�

, (6) =r Bs
where 1 2[ ( ), ( ), , ( )]Nθ θ θ=B a a a� � �� , { }1, 2, ,n ∈ � N . The 

th element is non-zero and equal to n ( )ns
kup if

for some  and zero otherwise. Note that B

differs from 

n kθ θ=�

{1,2, , }k ∈ � K

A  that it contains steering vector ( )nθa �  for all 
potential DOAs  rather than only the source signals DOAs. 
Hence,  is known and B A  is assumed to be a subset of .B

To obtain the sparse solution from (6) we should 
consider how to enforce sparsity for . The ideal 
measurement of sparsity is the count of nonzero entries in s ,
which is denoted by . However, when we use � -
norm to enforce sparsity, it would be a hard combinatorial 
optimization problem. In this paper we enforce sparsity by 

-norm just like -SVD, which results in a convex 

optimization problem. The optimization criterion is given as 
the following form: 

s

0s� � 0

1� 1�

. (7) 1ˆ
ˆ ˆmin subject to =

s
s� � r Bs

By solving this convex optimization problem, DOA 
estimation can be achieved. 

Next, we consider how many sources can be estimated 
by using this sparse recovery method. The following lemma 
[3] gives sufficient conditions for the existence of a unique 
solution for the MMV problem. 

Lemma 1: Under the assumptions that any m  columns 
of  are linearly independent and rank , a 
solution with 

B ( ) L m= ≤r

uK  nonzero entries, where 
( ) / 2uK m L≤ + −1� �� � , is unique. 

It is obvious that the rank of r  is 1 and the maximum 
number of any linearly independent columns of B  is 
2 2M −  according to the Vandermonde property. Through 
Lemma 1, the proposed method can resolve up to 1M −
signals. 

4. NUMERICAL SOLUTION 

Herein, we outline the solution of this convex optimization 
problem in (7). -SVD [4] minimizes -term by 
constraining -term smaller than a threshold to solve a 
joint-sparse recovery problem. Here we consider 
constraining the -term instead of -term, which is 
rational according to the theory of Lagrange multiplier. The 
sum of elements in p  is equal to the total power of all 
signals, which can be easily estimated from sample 
covariance matrix. 

1� 1�

2�

1� 2�

Considering the finiteness of snapshots the estimate  of 
 is not accurate and also the sampling grids may not 

include the real angle, we evolve (7) into the following form: 

r̂
r

2 1ˆ
ˆˆ ˆ ˆ ˆmin subject to ,totalPα− ≤

s
r Bs s s 0� � � � 	 , (8) 

where  is the estimate of  total power of all signals, 
is a parameter which depends on the number of snapshots 
and signal-to-noise ratio (SNR) level. The vector inequality 

t̂otalP α

ˆ 0s 	  means  for all ,ˆ( ) 0n ≥s n { }1, 2, ,n N∈ � .
Firstly the sample covariance matrix can be presented as 

,
1

1ˆ ˆ( ) ( ) [ ], , {1, 2, , }
T

H
p q

t
t t r p q M

T =

= = ∈�R x x � , (9) 

where T  is the number of snapshots. Then, considering R
is a Hermitian Toeplitz matrix, we can obtain   by r̂

1,1,
1ˆ ˆ , 1,2, ,

1

M

q p q
q p

pr r p
M p − +

=

=
− +

= � � M , (10) 

*
,1 1,ˆ ˆ , 2,3, ,p pr r p M= = � . (11) 

Next, the estimate of the total power of all signals is 
given by 

2
1,1

ˆ ˆ ˆtotalP r σ= − , (12) 
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where  is the estimate of the noise power. If the accurate 
knowledge of the number of signals is known,  can be 
given by the average of the 

2σ̂
2σ̂

M K−  smallest eigenvalues of 
. Without this knowledge, in general, a somewhat 

underestimated  can be given by the minimum 

eigenvalue of .

R̂
2σ̂

R̂
In most scenarios, true DOAs may be not included in 

sampling grid, so an adaptive method can be applied to 
enhance the fineness of the grid [4]. This method makes the 
grid finer around the approximate DOAs in each iteration 
and gets finer estimates. 

The DOA estimation in (8) can be efficiently worked out 
in the second-order cone (SOC) programming framework 
[7]. The canonical SOCP form of (8) can be expressed as 

ˆ

2

min

subject to , ,ˆ ˆ ˆ ˆT

g

g β≤ ≤−
s

r B s1s s� � 	 0
, (13) 

where  is an  vector of ones, 1 1N × g  is an auxiliary 

variable and . By solving (13) the DOA estimates 
can be obtained from the locations of dominant peaks of .

t̂otalPαβ =
ŝ

Remark A: Regarding the computational complexity of 
-ACCV, the calculation of  and  requires 

 and solving (13) requires 
 [4]. Therefore, the computational cost of -ACCV

is mainly in solving (13), and is obviously lower than the 
aforementioned sparse representation DOA estimation 
algorithms such as -SVD and JLZA, which requires 

 and , respectively. 
Although the cost of -ACCV is higher than some 
subspace-based algorithms, such as MUSIC, which requires 

, it has higher resolution and does not rely on 
knowledge of the number of signals. Also, a fact should be 
noted that the cost of complexity reducing is that -ACCV
fails for coherent or correlated signals. This issue can serve 
as the challenging topic for further research. 

1� R̂ r̂
2( ) (( 1)( 2) / 2O TM O M M+ − − )

) )

)

3( )O N 1�

1�
3 3(O K N 3 2(O N MN KMN+ +

1�

3(O M

1�

5. SIMULATIONS RESULTS 

In this section we present the numerical simulation results to 
illustrate the performance of the proposed method. We 
compare the performance of -ACCV with some existing 
algorithms in which the number of signals is assumed to be 
known. The simulations are performed using software 
toolbox SeDuMi 1.1 [8]. By the way, the grid refinement 
procedure in [4] is used for estimation accuracy analysis.  

1�

We consider zero-mean uncorrelated narrowband signals 
in the far-field impinging upon a ULA of  sensors 
separated by half a wavelength. The proposed method starts 
with a uniform grid with 1  sampling . In all 

simulation examples below, SNR is defined as 
SNR

8M =

° 180N =

2

21 1
( ) / ( )T T

t t
t

= =
= � �Au n
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Fig.1 RMSE versus .α

2

2
t , all signals’ powers are 

identical and the number of Monte Carlo trials is 500. 
Before simulations we try to analyze the selection of the 

parameter . Assume that uncorrelated sources are held 
fixed at  and 10 . The root mean square error (RMSE) 
of the DOA estimate by using various values of  with 

 at some SNR levels and SNR=10 dB at different 
number of snapshots are shown in Fig. 1(a) and Fig. 1(b), 
respectively. When the number of snapshots is given, the 
optimal value  changes little with the improvement of 
SNR level, especially approaches a constant value in high 
SNR level. In the same SNR level  approaches 1 with 
the increasing number of snapshots. The above results can 
be approximately described by the following analysis. The 
elements of sample covariance matrix  satisfy 

α
10°− °

α
200T =

optα

optα

R̂

( )( ){ }, , , , , ,ˆ ˆ /m p m p k l k l m k l pE r r r r r r− − = T  (see [9] for details). 

According to (10) and (11), we could claim that 
ˆ · /total total totalP P P γ− ≤ T  with a high probability, where γ

is associated to SNR level and the number of sensors. We 
choose an appropriate γ , and substitute it into the upper 
value of the bias to make that the probability of   
ˆ (1 / )total totalP P Tγ> + is small. When the sparse constraint 

1
ˆ / (1 / )totalP Tγ≤ +s
� �  is used for this problem, i.e., 

1/ (1 / )opt Tα γ= + , we can guarantee that �  for the 
recovery result is close to P  with a high probability. 
Since  approaches a constant value in high SNR level, 

1ŝ �

total

optα
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γ  also approaches a constant value in high SNR level. In 
Fig. 1(b), the estimate of γ  is 1.23, which is also used in the 
following two simulations. 

Next, in Fig. 2 we compare the resolution ability of our 
proposed method with those of -SVD, JLZA, MUSIC [10] 
and TLS-ESPRIT [11] using two closely spaced signals at  

and . When 

1�

[ 3 ,3 ]° °= −θ 200T = 1̂θ θ−  and 2 2θ̂ θ−  are 

both smaller than 1 2 / 2θ θ− , we consider the two signals 
are resolved successfully. Fig. 2 shows that our method 
achieves a higher resolution than other algorithms. 

Fig. 3 shows the RMSE results versus SNR for -
ACCV, some existing algorithms and the CRB [12] in 
scenario of three signals. Three uncorrelated signals are held 
fixed at  and . It is shown 
that -ACCV always outperforms -SVD and has a good 
performance at low SNR. However, the RMSE curve of � -
ACCV degrades slowly for high SNR for that -ACCV is 
sensitive to the number of snapshots. In other words, if a 
better accuracy is pursued, more snapshots are needed. 

1�

[ 10.2 ,9.1 ,19.8 ]° ° °= −θ 200T =

1� 1�

1 [6

1�

6. CONCLUSIONS 

In this paper, we proposed a novel method for DOA 
estimation for uncorrelated signals. By transforming the 
joint-sparse recovery problem into a SMV model we greatly 
decreased computational complexity and eliminated the 
noise component. Moreover, our method provides a novel 
way of DOA estimation without the knowledge of the 
number of signals. 
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