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ABSTRACT

Derivation of monopulse angle accuracy for phased array 
radar to achieve Cramer-Rao lower bound is presented in 
this paper. Antenna element positions originating from 
antenna center are used for difference beam taper in this 
monopulse angle estimation. For uniform linear array, the 
accuracy is 1.16 times higher than conventional monopulse 
method. In other words, SNR can be reduced by 1.3 dB to 
achieve required angle accuracy. Suboptimal difference 
beamforming taper for the subarray-based digital 
beamforming radar is also derived. 

Index Terms— monopulse, angle accuracy, Cramer-
Rao lower bound, taper

1. INTRODUCTION 

Monopulse angle estimation technique has been widely used 
in phased array radar systems to determine angular location 
of a tracking target [1]. Angle accuracy for a target by 
monopulse estimation can be described with normalized 
monopulse slope and this figure can be determined by 
aperture illumination design for phased array antenna with 
RF monopulse comparator [2]. Recent advanced phased 
array radar systems may employ monopulse angle 
estimation method by digital beamforming (DBF). In 
element- or subarray-level digital beamforming radar, 
multiple spatial channels are available for multifunctional 
array signal processing including digital monopulse 
beamforming. There are some criteria for the monopulse 
design such as achieving lower sidelobe level for the sum 
and difference beam [3]. In this paper, our criteria is to 
improve monopulse angle accuracy to Cramer-Rao lower 
Bound (CRLB). 

CRLB provides a lower bound on the performance of 
an unbiased estimator. There are some references presenting 
CRLB on angle estimator for single target impinging on 
array antenna in array signal processing literatures [4]-[7]. 
In the derivation of the CRLB, a steering vector for a target 
angle and the derivative vector are defined. It is 
straightforward to notice a combination of those vectors as 
the sum and difference beamformers is optimal for 
monopulse angle estimation. However there is no reference 

that derives monopulse angle accuracy with those 
monopulse beamformers. 

In this paper, a derivation of monopulse angle accuracy 
to achieve CRLB is presented. Specifically a difference 
beamforming taper using antenna element positions 
originating from antenna center is introduced to achieve 
CRLB. This is a realization of the optimal difference 
beamformer for the element-level DBF. It will be shown 
that monopulse angle accuracy by the derived monopulse is 
agreed with CRLB. Quantitative discussions on angle 
accuracy improvement for the element-level DBF radar with 
uniform linear array (ULA), compared with a conventional 
monopulse are presented. Furthermore the suboptimal 
difference beamforming taper for the subarray-based DBF 
radar is derived. Conclusions of the discussions are 
validated by numerical simulation. 

2. OPTIMAL MONOPULSE ANGLE ACCURACY 

2.1. CRLB on Angle Accuracy 

Signal model for a single target arriving at a linear array 
antenna is considered in this paper. Received vector tx
for M elements linear array is given as 

t u s tx a n t (1)
where , ,t s t tn are snapshot index number, complex 
amplitude of a target signal and white Gaussian received 
noise vector with averaged power 2  respectively. ua  is 
a steering vector for target angle u  in sine space given as

12 2exp , ,exp
T

Md d
u j u j ua (2)

sinu (3)
where , ,md  are the m-th antenna element positions, 
wavelength and the target angle corresponding to u
respectively.

CRLB is found by solving for the diagonal elements of 
the inverse of the Fisher information matrix (FIM). 
Specifically the first step is to calculate FIM, then partition 
FIM into blocks corresponding to wanted parameters,  
unwanted parameters and cross-term respectively. The final 
step is to derive CRLB for wanted parameters by inversion 
of the FIM by using inverse matrix formula. All the steps 
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are straightforward to describe but may waste space with 
long and complicated expressions.  

Due to space limitation, the derivation process of 
CRLB for the target angle u  is spared and the final result is 
provided in this paper. Note that a very comprehensible 
derivation process of CRLB can be found in [8]. CRLB for 

, or , is given as  u CCRLB u

1
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1
2 2

CRLB

H
H

H

u u
u u

T ESNR u u

u

a a
a D I Da

a a

(4)

where  are total snapshot number and identity matrix 
respectively.

,T I
ESNR is a signal to noise power ratio at 

antenna element and given as 
*

2
1

1 T

t

ESNR s t s t
T

. (5)

D  is a diagonal matrix given as 
. (6)1,..., Mdiag d dD

Note D is derived from the derivation of a steering vector 
 with respect to u  as ua

2u
u j u

u
a

a Da . (7)

 To employ monopulse angle estimation method in 
phased array radar, antenna elements may be arranged in a 
symmetric fashion around antenna center as  

1 2 1 1 2 2 1, ,..., , , ,..., ,M Md d d d d d d d . (8)

By substituting (7) and (8) into (4), angle accuracy CRLB

for a linear array antenna with the symmetric arrangement is 
derived as  
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where  is a signal to noise power ratio after spatial and 
inter-pulse coherent integration as 

SNR

. (10)SNR T M ESNR

2.2. Derivation of the Monopulse Angle Accuracy 

In this section, derivation of the monopulse angle accuracy 
to achieve CRLB is presented. Symmetric arrangement as 
(8) is assumed.  As beam pointing angle of the linear 
antenna is 0u , a steering vector and its derivative vector 
are written as 

(11)0 0a a 1

2 20 j ja a D1 d (12)

where  are given as ,1 d

1,1,...,1,1 T1 . (13)

1 2 2 1, ,..., , T
d d d dd . (14)

For sum and difference beamforming, the beam weight 
vectors are given respectively as 

0w a 1 , (15)

0 0

2
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H

H M

m
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M
j

d

a aw a
a a

d . (16)

Note that the difference beam weight vector w  is a scaled 
vector of a  and normalized to have an equal norm with 
w  and to have real number elements. 

It is well-known that monopulse error curve can be 
approximated by a linear function around 0u  as 
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(17)

where  are the normalized monopulse slope for 
the deriving monopulse and the beamwidth of the sum beam. 
By referring to (14)

,drv ukm BW

, H u1 a  and  in (17)H ud a  can be 
manipulated as 

2

1 1

2 2exp 2 cos

M
M

H m m

m m

d d
u j u

M

1 a u (18)
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u d j u j d u
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In the development from the first line to the second line of 
the right-hand member of (18) and (19), a range of u  is 
assumed to be small so that following approximation can be 
hold. 

2cos 1md
u (20)

2 2sin m md d
u u (21)

By substituting (18) and (19) into (17), following property 
can be derived.
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Monopulse angle accuracy drv  is now given as 
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(23)

It is observed that the monopulse angle accuracy by (23) is 
agreed with CRLB derived by (9). Namely, 

(24)drv CRLB

. (25)drv CRLBkm km

In other words, it is proved that monopulse angle accuracy 
with the sum and difference beam weight vector by  (15)
and (16) respectively and antenna configuration with (8) can 
achieve CRLB. 

Especially for ULA, antenna element positions are 
given as 

1
2m

M d
d md (26)

where  is the inter-elements spacing. From (26)d ,
following property is easily found.  

2
2 2

1
1

12

M

m
m

d
d M M (27)

By substituting (27) into (9) or (23) and with a large 
M where 2 21M M  can be hold, CR or ULA given as LB f

2

1 6
2 1

1 6 6 1
2 2

6 10.886
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6 1
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1.61 2 2
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            (28) 

where are antenna aperture length of ULA and the 

(29)

, ULAD BW
beamwith of ULA. 

D Md

0.886ULABW
D

(30)

And by  (23) referring to  is specifically given as 
1)

2.3. Accuracy Improvement 

 conventional monopulse estimation used in phased array In
radar, the sum and the difference beam are generated by 
summation and subtraction of beam outputs from 
symmetrically-divided subarray. For ULA case, following 
property is hold  

2
Monokm D

uBW
. (32)

From (30) and (32), Mono

opulse in phased arra rs can be easily found as 
km  for conventional 

mon y rada

0.886 1.39D
km BW

2 2Mono u (33)

As a result, angle accuracy for conventional monopulse 
with ULA is given as 

2
uBW

Mono
Monokm SNR

(34)

By comaparing (28) with (34), angle accuracy 
improvement of the derived monopulse in the earlier section 
to conventional monopulse is given as 

1.16Mono CRLBkm

CRLB Monokm
(35)

From (35), it is found that angle accuracy of the derived 
mon

2.3. Difference Beamformer for Subarray-based DBF

Subarray-based digital beamforming with several ten 

opulse is 1.16 times higher than conventional 
monopulse due to the difference of the normalized 
monopulse slope. By this improvement, radar system 
engineer can allocate 1.3 dB lower SNR for achieving 
required angle accuracy for phased array radars.

channels is a practical solution for phased array radars with 
several hundred or thousand antenna elements [9]. For this 
case, the suboptimal difference beamforming taper SAMw  to 
w  where SAM  is a number of subarray is briefly d. 

 subopti  beamformer SAMw  can be given by solving 
following a linearly constraine imization problem. 

derive
The mal

d opt
2

arg min subject to 0SAM H Hw Tr w r T w
r

(36)

where  is the subarray transformation matrix with T
IHTT . B
ed

y using Lagrange multipliers, SAMw for (36) can 
 as be solv

1
1

1
SA

H H H
M H H

H H H

w w T T T T
w T T T I

w T T T T w
w . (37)

3. NUMERICAL SIMULATIONS 

umerical simulations are carried out to validate angle 
, CRLBkm

1.61CRLBkm . (3 N
accuracy improvement of the derived monopulse over 
conventional monopulse. Firstly a scenario that single target 
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signal is impinging on the element-level DBF radar with 
ULA consisting of 64 elements with half-wavelength 
element spacing is considered and RMSE of estimated 
angles by 1000 trials is validated for SNR ranging from 10 
to 35 dB. Detail condition for the simulation is summarized 
in the Table 1. 
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sus SNR is shown in Fig.1. Note RMSE is 
norm

where
the 

alized by a beamwidth of the sum beam. It is observed 
that plots of the derived monopulse are agreed with CRLB 
and angle accuracy is 1.16 times higher than conventional 
monopulse. In other words, SNR to allocate to meet 
required angle accuracy can be reduced by 1.3 dB.

Second scenario is for the subarray-based DBF 
antenna elements are uniformly grouped into 
2,4,8,16,32,64SAM  non-overlapping subarrays and the 

 beamforming taper SAMw  is used. 
Note that the cases for 2 and 64SAM  are valent to 
conventional monopulse a  monopulse with 
element-level DBF respectively. RMSE for various number 
of subarray SA

suboptimal difference
 equi

nd the derived

M  at SNR = 20 dB is shown in Fig. 2. It is 
observed that MSE of the derived monopulse with the 
suboptimal beamformer SAMw  is nonlinearly degraded from 
CRLB by reducing the nu  of subarray SA

 R

mber M .

Figure 2. RMSE of angle estimation vs. number of subarray for SNR = 20 
dB. The antenna elements are uniformly grouped into 2, 4, 8, 16, 32 and 64 
subarrays. Cases of 2 and 64 subarrays are equivalent to conventional and 

the derived monopulse with element-level DBF. 

4. CLOSING REMARKS 

Derivation of monopulse angle accuracy to achieve CRLB 
was presented in this paper. Antenna element positions 
originating from antenna center were used for difference 
beam taper. Suboptimal difference beamforming taper for 
the subarray-based DBF radar was also derived. For ULA, 
the theoretical accuracy improvement was 1.16 times higher 
than conventional monopulse method. This figure was 
validated by numerical simulations.  

TABLE I. SIMULATION CONDITION

Array type ULA 

Number of antenna elements ents positioned by 0.5  step 64 elem

DOA of a signal 0 deg 

Number of snapshot 16

SNR 10 d
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