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ABSTRACT

This paper addresses the Direction-of-Arrival (DOA) estimation
problem for amplitude modulated signals whose number is more
than that of the array sensors. The proposed method is based on an
idea of virtual array. For source signals with amplitude modulation,
such as binary phase shift keying (BPSK) and M-ary amplitude shift
keying (M-ASK), we show that introducing in virtual array actually
gives rise to processing the fourth-order moments of array output,
which is related to higher-order statistics (HOS) techniques. While
traditional HOS methods in array processing mainly exploit higher-
order cumulants of the received data, we propose a DOA estimation
method based on the fourth-order moments, which is of lower com-
putational load than the fourth-order cumulants. Simulation results
demonstrate the effectiveness of the proposed method for estimating
DOAs of more source signals than array elements.

Index Terms— DOA estimation, amplitude modulated signal,
virtual array, under-determined

1. INTRODUCTION

In the field of array signal processing, addressing the direction-of-
arrival (DOA) estimation problem has been widely studied [1]. How-
ever, classical DOA estimation methods always assume the number
of sources is smaller than the number of array sensors.

Being one way out for handling the case of more sources than
sensors (i.e., under-determined case), higher-order statistics (HOS)
techniques were introduced into array processing to deal with DOA
estimation problem for non-Gaussian signals. The HOS methods
give rise to higher resolution and increased degree-of-freedom. In
[2] an HOS based MUSIC algorithm was proposed which utilizes
fourth-order cumulants in lieu of the traditional second-order mo-
ments based approaches. It is demonstrated in [3] and [4] that the ef-
fective array aperture can be increased and the Gaussian noise can be
suppressed by using higher-order cumulants. In [5] and [6], DOA es-
timation problems based on the fourth-order and higher order statis-
tics are generalized as a uniform framework, leading to the concept
of virtual array with an arbitrary even order (2qth order). Based on
the 2qth order virtual array, the 2q-MUSIC algorithm has been pro-
posed in [7], which can be regarded as a generalization of the stan-
dard MUSIC algorithm. Due to the increased degree-of-freedom,
the HOS methods can estimate DOAs of more sources than array
sensors. Most recently, a new DOA estimation approach based on
the Khatri-Rao subspace is proposed in [8]. Although no higher-
order cumulants are used, the Khatri-Rao subspace approach can
also perform under-determined DOA estimation, assuming signals
are quasi-stationary (for instance, speech and audio signals).

In this paper we deal with the DOA estimation problem for am-
plitude modulated signals in the under-determined case. A concept
of virtual array and the procedure of constructing it are proposed,
resulting in the processing of fourth-order moment of array output
data. Based on the fourth-order moments, an MVDR type method is
utilized to perform DOA estimation. The proposed higher-order mo-
ment based method is of lower computational complexity than cal-
culating the fourth-order cumulants as in the traditional HOS meth-
ods, meanwhile it can also address under-determined DOA estima-
tion cases and need not to know a priori the number of sources.

2. SIGNAL MODEL

Consider a uniform linear array (ULA) consisting of M omni-
directional antennas with half-wavelength interelement spacing.
There are n narrowband plane waves impinging on the array from
angles θi, (i = 1, ..., n) which are measured with respect to the
broadside. The complex envelopes of these plane waves are si(t)
and they are assumed to be uncorrelated with each other. Moreover,
to facilitate the following proposed DOA estimation method, here
we assume that the source signals are amplitude modulated, such as
binary phase shift keying (BPSK) and M-ary amplitude shift keying
(M-ASK). Thereby the complex envelopes si(t)’s are real valued,
i.e., s∗i (t) = si(t), where the superscript ‘*’ represents the complex
conjugate.

The steering vector corresponding to each of the above source
signals is respectively expressed as

a(θi) =
[
1, e−jπ sin θi , · · · , e−j(M−1)π sin θi

]T
, (1)

where i = 1, ..., n, j =
√−1. And the baseband output at each

sensor is denoted as xi(t). Then according to the definition above,
the baseband array output can be written as

x(t) = As(t) + e(t), (2)

where x(t) = [x1(t), ..., xM (t)]T , s(t) = [s1(t), ..., sn(t)]
T , A =

[a(θ1), ..., a(θn)] denotes the array manifold matrix, and e(t) ∈
C

M×1 is temporally and spatially white noise which is uncorrelated
from the source signals. The array output vector x(t) is called a
snapshot, and in this paper it is also termed the actual snapshot when
necessary.

Therefore, the covariance matrix of the array output is defined
as

Rxx = E
{
x(t)xH(t)

}
= ARssA

H + σ2
eI, (3)

where Rss = E{s(t)sH(t)} is the source covariance matrix, and
σ2
e is the noise power.
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3. CONSTRUCTION OF VIRTUAL ARRAY

The virtual array used for proposed under-determined DOA estima-
tion method is constructed in two steps. In the first step, Kronecker
product is used to obtain the initial virtual snapshot. In the sec-
ond step, a dimension-reduction operation is performed on the re-
sults of the first step to produce the virtual array with interference-
cancellation, which is used for the subsequent DOA estimation. The
following subsections describe the construction procedures in detail.

3.1. Kronecker Product of Actual Snapshot

Given the actual snapshot in (2), by utilizing Kronecker product, a
set of virtual snapshot can be constructed as

xv(t) = x(t)⊗ x∗(t)

= (A⊗A∗) · (s(t)⊗ s∗(t)) + ẽ(t), (4)

where ⊗ denotes the Kronecker product, and

ẽ(t) = (IM ⊗A∗) · (e(t)⊗ s∗(t))

+ (A⊗ IM ) · (s(t)⊗ e∗(t)) + e(t)⊗ e∗(t) (5)

denotes the terms that contribute as noise.

Moreover, (A⊗A∗) · (s(t)⊗ s∗(t)) in (4) is regarded as (vir-
tual) signal term which can be denoted as s̃(t) and written more
explicitly as

s̃(t) =

n∑
i=1

(a(θi)⊗ a∗(θi))|si(t)|2

+
n∑

i=1

n∑
k=1
k �=i

(a(θi)⊗ a∗(θk))si(t)s
∗
k(t). (6)

Recall that the complex envelope of each source si(t), i = 1, ..., n,
is real-valued, hence si(t)s

∗
k(t) = sk(t)s

∗
i (t) for 1 ≤ i, k ≤ n,

and |si(t)|2 = s2i (t). Therefore certain terms in (6), such as
(a(θi)⊗ a∗(θk)) si(t)s∗k(t) and (a(θk)⊗ a∗(θi)) sk(t)s∗i (t), can
be combined, and then (6) can be further expressed as:

s̃(t) =

n∑
i=1

av(θi)s
2
i (t) +

n∑
i=1

n∑
k=i+1

bv(θi, θk)si(t)sk(t), (7)

where av(θi) = a(θi)⊗a∗(θi) and bv(θi, θk) = a(θi)⊗a∗(θk)+
a(θk) ⊗ a∗(θi), 1 ≤ i, k ≤ n. Then according to (4) and (7), the
virtual snapshot in (4) can be rewritten as

xv(t) = s̃(t) + ẽ(t) = Av · sv(t) + ẽ(t), (8)

where

Av = [av(θ1), · · · ,av(θn),bv(θ1, θ2), · · · ,bv(θn−1, θn)]

and

sv(t) =
[
s21(t), · · · , s2n(t), s1(t)s2(t), · · · , sn−1(t)sn(t)

]T
.

It is observed that (8) resembles the original array signal model
in (2), thus can be regarded as a virtual array signal model with the
number of (virtual) source signals n(n+ 1)/2 and the size of (vir-
tual) array M2.

3.2. Virtual Array with Interference-Cancellation

According to the virtual array signal model described by (8), we can
see that although the array is virtually expanded to a size of M2,
there are also newly generated virtual source signals si(t)sk(t), i �=
k. Obviously, virtual signals s2i (t), i = 1, ..., n, are directly related
to each of the actual sources respectively. However, si(t)sk(t)’s
can be regarded as interference. Therefore, the increase of virtual
array aperture comes with the cost of increased number of virtual
interference.

On the other hand, the direct Kronecker product of snapshot ac-
tually brings in redundant phase information.

Therefore, to address the aforementioned problems of virtual in-
terference and redundant phase, we construct a new virtual array
structure which gains the advantage of increased degree-of-freedom,
thus being able to deal with under-determined DOA problem.

3.2.1. Steering Vector with Redundancy-Reduction

We start by considering the phase redundancy reduction, but later it
will be shown that the operation of reducing redundancy simultane-
ously leads to interference cancellation.

According to a basic algebraic relationship that vec(abT ) =
b⊗ a for column vectors a and b, the virtual steering vector av(θi)
in (7) can be expressed as

av(θi) = vec
(
a∗(θi) · aT (θi)

)
, (9)

where ‘vec(·)’ denotes the vectorization operator (in a column-wise
manner). Therefore, we term the matrix a∗(θi) · aT (θi) as con-
structing matrix. Based on the definition of a(θi) in (1), the con-
structing matrix can be expressed in an exponential form as:

a∗(θi) · aT (θi) = exp(jD), (10)

where ‘exp(·)’ denotes performing entry-wise exponential function
to a matrix, and

D =

⎡
⎢⎢⎢⎢⎢⎣

0 φi · · · (M − 1)φi

−φi 0 · · · (M − 2)φi

−2φi −φi · · · (M − 3)φi

...
...

. . .
...

−(M − 1)φi −(M − 2)φi · · · 0

⎤
⎥⎥⎥⎥⎥⎦
,

where φi = −π sin θi represents the phase information that is re-
lated to the DOA θi. Actually there are only (2M − 1) distinct
entries in this M ×M matrix D. Thus, more specifically, the M2-
length virtual steering vector av(θi) contains only (2M−1) distinct
exponential terms: ejmφi ,m = −(M − 1), · · · , (M − 1).

Hence, according to (9) and (10), we can reduce the dimension
of av(θi) by discarding the redundant elements in vector av(θi) and
preserving (2M − 1) distinct elements. This procedure is equiva-
lent to selecting corresponding distinct entries from the constructing
matrix a∗(θi) ·aT (θi), and there are various ways to perform the se-
lection. To facilitate the under-determined DOA estimation, here we
adopt a specific selection strategy by picking on the first column and
the first row from the constructing matrix. And then by rearranging
these selected terms by the order of increasing multiples of phase φi

and forming a column vector, we construct the redundancy-reduction
(also with reduced-dimension) steering vector as:

ar(θi) =
[
e−j(M−1)φi , · · · , 1, · · · , ej(M−1)φi

]T
. (11)
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Apparently, elements of ar(θi) form a subset of av(θi)’s elements.
To express this relationship, we introduce a manipulation matrix Q
to express this selection strategy:

ar(θi) = Q · av(θi). (12)

The size of matrix Q is (2M − 1) × M2, and in each row there’s
only one non-zero entry (whose values is 1). The effect of Q is to se-
lect elements from vector av(θi) according to aforementioned selec-
tion strategy of constructing redundancy-reduction structure. More
specifically, matrix Q can be expressed as:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. .

.

1
0M×(M2−M)

0(M−1)×M IM−1 ⊗ [1, 0, · · · , 0]︸ ︷︷ ︸
1×M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

Notice that the upper left block of Q is an anti-diagonal matrix.

3.2.2. Cancellation of Interference

Now we show that by performing the redundancy-reduction (also
as dimension-reduction) operation, the virtual interference steering
vectors bv(θi, θk) in (7) can be expressed by ar(θi), thus equiva-
lently being eliminated.

The redundancy-reduction operation on bv(θi, θk) is performed
with matrix Q as Q · bv(θi, θk) = Q · (a(θi)⊗ a∗(θk)) + Q ·
(a(θk)⊗ a∗(θi)). Parallel to Section 3.2.1, to illustrate this oper-
ation more clearly, we form a constructing matrix to construct the
dimension-redundant vector Q · (a(θi)⊗ a∗(θk)).

Notice that a(θi) ⊗ a∗(θk) = vec
(
a∗(θk) · aT (θi)

)
, and then

we have

a∗(θk) · aT (θi) = exp(jE)

where

E =⎡
⎢⎢⎢⎢⎢⎣

0 φi · · · (M − 1)φi

−φk φi − φk · · · (M − 1)φi − φk

−2φk φi − 2φk · · · (M − 1)φi − 2φk

...
...

. . .
...

−(M − 1)φk φi − (M − 1)φk · · · (M − 1)(φi − φk)

⎤
⎥⎥⎥⎥⎥⎦
.

In accordance with the construction of ar(θi) discussed in 3.2.1, we
form the dimension-reduction version of (a(θi)⊗ a∗(θk)) by pick-
ing on the first column and first row from the matrix exp(jE), and
then rearrange these terms into a column vector in the same manner
as forming ar(θi) in (11). Therefore, we obtain

Q · (a(θi)⊗ a∗(θk))

=
[
e−j(M−1)φk , · · · , e−jφk , 1, ejφi , · · · , ej(M−1)φi

]T
. (14)

Using (14), the result of dimension-deduction performed on interfer-

ence steering vector bv(θi, θk) is:

Q · bv(θi, θk)

= Q · (a(θi)⊗ a∗(θk)) +Q · (a(θk)⊗ a∗(θi))

=
[(

e−j(M−1)φk + e−j(M−1)φi

)
, · · · , (1 + 1), · · · ,

(
ej(M−1)φk + ej(M−1)φi

)]T

=
[
e−j(M−1)φi , · · · , 1, · · · , ej(M−1)φi

]T

+
[
e−j(M−1)φk , · · · , 1, · · · , ej(M−1)φk

]T

= ar(θi) + ar(θk). (15)

Therefore, the virtual interference steering vectors Q · bv(θi, θk),
1 ≤ i, k ≤ n, are the linear combinations of ar(θi), 1 ≤ i ≤ n.

3.2.3. Virtual Snapshot with Interference-Cancellation

Next we perform the ‘multiplying by Q’ operation on the vir-
tual snapshot xv(t) in (8), which will be shown to result in the
interference-cancellation and increase of degree-of-freedom. Using
matrix Q, the dimension-reduced version of xv(t) is expressed as

xr(t) = Q · xv(t) = Q ·Av · sv(t) +Q · ẽ(t). (16)

Substituting the results of (12) and (15) into (16), we further obtain:

xr(t) = Q ·Av · sv(t) +Q · ẽ(t)
= [ ar(θ1), · · · ,ar(θn), (ar(θ1) + ar(θ2)) ,

· · · , (ar(θn−1) + ar(θn)) ] · sv(t) +Q · ẽ(t). (17)

Note that the virtual array manifold matrix Q · Av consists of
ar(θi), i = 1, · · · , n, as well as the linear combinations of them.
Then by combining the ar(θi)’s, (17) can be rewritten as

xr(t) = Ãr · sr(t) +Q · ẽ(t), (18)

where
Ãr = [ ar(θ1) , · · · , ar(θn) ] ,

and

sr(t) =

n∑
i=1

si(t) · [ s1(t), · · · , sn(t) ]T .

Comparing this virtual array signal model with the original signal
model in (2), we see that the number of sources in the new model
is the same as that in the original model, which equals to n, while
the array size is enlarged to (2M − 1). Thus the increase of degree-
of-freedom can lead to better DOA resolution and allow the array to
deal with more source signals than actual sensors. More specifically,
the virtual array is able to resolve up to (2M − 2) sources.

4. DOA ESTIMATION BY NON-REDUNDANT MVDR
METHOD

Based on the previous results, we utilize MVDR method for DOA
estimation. Firstly, the covariance matrix of the virtual array is de-
fined as

Rrxrx = E
{
xr(t)x

H
r (t)

}
. (19)

According to (4) and (16), (19) is rewritten as:

Rrxrx = Q · E
{
(x(t)xH(t))⊗ (x(t)xH(t))

}
·QH . (20)

2567



100 50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle (°)

N
or

m
al

iz
ed

 S
pa

tia
l S

pe
ct

ru
m

Proposed Method
Conventional MVDR

Fig. 1. DOA estimation by proposed method for 10 signals with 6
array sensors. Vertical dashed lines indicate true DOAs.

Therefore all the entries of Rrxrx are the fourth-order moments of
the actual array outputs xi(t), i = 1, · · · ,M . In comparison with
the traditional higher-order statistics methods which exploit higher-
order cumulants, the calculation of fourth-order moments is obvi-
ously more computationally efficient.

Given the definition of covariance matrix for the virtual array,
the corresponding MVDR spectrum function is expressed as

Pr MV DR(θ) =
1

aH
r (θ)R−1

rxrxar(θ)
, (21)

and then the DOA estimates are given by the locations of the n high-
est peaks of the spacial spectrum function.

5. SIMULATION RESULTS

Simulation is performed to evaluate the proposed method. Here we
consider amplitude modulated (AM) source signals impinging on a
uniform linear array (ULA), and the interelement spacing is equal
to half-wavelength. The signals’ DOA angles are measured with
respect to the broadside. Each receiver’s signal is corrupted by ad-
ditive white Gaussian noise, and the signal-to-noise ratio (SNR) is
assumed to be 10dB.

Fig. 1 shows the ability of the proposed method for dealing
with under-determined DOA estimation case, where 10 AM Gaus-
sian signals impinge on a ULA with 6 sensors. The true DOAs are
{θ1, · · · , θ10}={-60◦, -43◦, -28◦, -15◦, -5◦, 6◦, 20◦, 35◦, 50◦, 67◦}.
And 500 snapshots are used. In this under-determined case, the tradi-
tional DOA estimation methods based on second-order statistics can-
not resolve all sources. And the fourth-order cumulant MUSIC [2]
is also not applicable because the sources are Gaussian signals. The
simulation result illustrates that, the proposed method gives DOA
estimates for up to (2M − 2) sources with M sensors.

In the second example, we consider the performance of the pro-
posed method for resolving signals in under-determined case. Here,
four AM signals that are zero-mean uniformly distributed impinge
on a ULA with 3 sensors, The true DOAs are {θ1, · · · , θ4}={-30◦,
-10◦, 15◦, 35◦}. Fig. 2 shows the probability of resolving all the four
sources as a function of snapshots, comparing with the fourth-order
cumulant MUSIC (4-MUSIC) [2], which is a representative HOS
method. The interference cancellation in 4-MUSIC is performed in
a statistical sense, and the calculation of cumulants requires large
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Fig. 2. Performance of resolving signals versus snapshots number.
Four signals impinge on an array with 3 sensors.

number of snapshots; while the proposed virtual array model can-
cels the interference in a deterministic manner. As a result, simu-
lation result shows that the proposed method resolves all sources in
under-determined case using much less snapshots than 4-MUSIC,
even if the number of sources is known to 4-MUSIC.

6. CONCLUSION

We address the DOA estimation problem for amplitude modulated
signals in the under-determined case. Through mathematical anal-
ysis, we show that the proposed virtual array model increases the
degree-of-freedom when source signals are amplitude modulated.
We therefore propose a MVDR-type DOA estimation method that is
based on the fourth-order moment, which is of lower computational
load than the traditional fourth-order cumulant methods. Numerical
examples are provided to verify the validity of the proposed method
for dealing with under-determined case.
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