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ABSTRACT 

In this paper, we consider the direction of arrival (DOA) 
estimation problem under the coexistence of noncircular and 
circular signals. By exploiting the difference between the 
circularity of noncircular and circular signals, a method is 
proposed, which estimates the DOAs of noncircular and circular 
signals separately. The maximum number of detectable directions 
by the proposed method is twice that by the MUSIC method. 
Furthermore, since the proposed method resolves noncircular and 
circular signals based on the circularity difference rather than the 
DOA difference, the proposed method performs well regardless of 
the DOA separation between noncircular and circular signals. 
Simulation results illustrate the effectiveness of the proposed 
method. 

Index Terms—Direction of arrival (DOA) estimation, 
Noncircular signals, MUSIC

1. INTRODUCTION 

Array processing plays an important role in fulfilling the increased 
demands of wireless communication services [1]. However, the 
increase in system capacity by using array processing techniques is 
limited to the number of array elements since the maximum 
number of detectable directions by most of existing DOA 
estimation methods (e.g., MUSIC [2] and ESPRIT [3]) is less than 
the number of array elements. Although the methods based on 
high-order statistics overcome the problem above to some extent 
[4], [5], they require high computational cost.  

It should be emphasized that the DOA estimation methods 
above did not exploit the noncircularity property of noncircular 
signals (e.g., amplitude modulated (AM) and binary phase shift 
keying (BPSK) modulated signals) which are often used in many 
systems such as satellite systems. Only recently have some works 
[6]-[9] been proposed to estimate the DOAs of noncircular signals. 
By exploiting the noncircularity property of noncircular signals, 
they increase the number of detectable directions and improve the 
estimation accuracy as well. However, they cannot deal with the 
more realistic scenario that noncircular and circular signals coexist.  
To cope with this case, a method has been proposed in [10], which 
is based on the vector composed of the array output vector and its 
conjugate counterpart. Compared with the MUSIC method, this 
method increases the number of detectable directions and improves 
the estimation accuracy. However, since the method produces 
noncircular and circular signals simultaneously, it fails when 
noncircular and circular signals are spatially close to each other. 
To overcome this problem, we propose a method for estimating the 
DOAs of noncircular and circular signals separately, based on the 
fact that the unconjugated spatial covariance matrix of noncircular 

signals equals nonzero and the counterpart of circular signals 
equals zero, under the assumption that the signals are independent 
of each other. Since the proposed method resolves noncircular and 
circular signals by exploiting the difference between the circularity 
of noncircular and circular signals instead of the DOA difference, 
it performs well regardless of the DOA separation between the 
aforementioned signals. In addition, the maximum number of 
detectable directions by the proposed method is twice that by the 
MUSIC method and larger than that by the method in [10]. The 
price of the proposed method is that in large DOA separation, its 
estimation accuracy is lower than that of the MUSIC method. 

2. PRELIMINARIES 

2.1. Array data model 

In this paper, the superscripts *, T, and H represent the conjugate, 
transpose, and conjugate transpose operations, respectively. 
Consider the array with M sensors located on the same plane, 
where the first sensor is taken as reference and the coordinates of 
the mth sensor are denoted by ( , )m mx y . Suppose that there are K

narrow-band far-field signals ( )ks t  with the center wavelength λ
and the directions kθ  for 1, ,k K= . The vector of M sensor 

outputs can then be expressed as [10] 

( )
1

( ) ( ) ( )k

K
j

k k k
k

t s t e tφθ δ
=

r = a + n                 (1)

where ( )tn  is a circular complex white Gaussian noise vector with 

zero-mean and spatially uncorrelated with TE[ ] =nn 0  and 
H 2E[ ] nσ=nn I , kδ and kφ are the unknown amplitude and phase 

parameters, respectively, and ( )kθa is the steering vector for the 

kth signal, given by 2, ,2 2 T( ) [1, , , ]k M Kj d j d

k e e
π λ π λθ − −=a

where ,m kd  is the distance from the first sensor to the mth sensor 

along kθ , defined by , cos sinm k m k m kd x yθ θ= + . For simplicity we 

omit the time variable.  Using matrix notation, (1) is rewritten as  
= +r ABs n                                    (2) 

where 1[ ( ), , ( )]Kθ θ=A a a , 1
1{ , , }Kj j

Kdiag e eφ φδ δ=B , and 
T

1[ , , ]Ks s=s . 

The conjugated covariance matrix of the array output vector can 
be written as

H H H 2
sE[ ] nσ= = +R rr ABR B A I                  (3) 

where E[ ]  denotes mathematical expectation and H
s E[ ]=R ss . 

Based on (1) and due to TE[ ] =nn 0 , the unconjugated 
covariance matrix (also named as the elliptic covariance matrix [7])  
of the array output vector can be expressed as [6] 

T T T
sE[ ]′ ′= =R rr ABR B A                     (4) 
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where T
s E[ ]′ =R ss . 

2.2. Circularity 

Based on the literature [6] and [12], it is known that the elliptic 
covariance for a random variable h is defined by  

2E[ ] hj
h hhh e ϕρ σ=                               (5) 

where hρ is the non-circularity rate of h  and 0 1hρ≤ ≤ , hϕ is the 

non-circularity phase, and 2 *E[ ]h hhσ = . 

Based on [10] and [11], it is known that a complex random 
variable h  is named to be circular if  E[ ] 0h = and E[ ] 0hh = . 
Circularity is a common hypothesis for narrowband signal analysis. 
However, in many modern telecommunication systems or satellite 
systems, noncircular sources (such as AM and BPSK modulated 
signals) are often employed.  

As mentioned in [10], it is more realistic that some users 
transmit circular signals while others send noncircular signals. In 
this paper, we consider the problem of DOA estimation in this 
more general scenario and develop a method for estimating the 
DOAs of circular and noncircular signals separately in Sec. 3.  

In addition, similarly to [7]-[10], we consider that noncircular 
sources emit AM/BPSK modulated signals, which implies that the 
non-circularity rate ρ  of the noncircular sources equals one. 

3. THE PROPOSED METHOD 

3.1. Derivation 

Assumption 1: The signals are zero-mean and independent of each 
other, which leads to HE[ ( ) ( )] 0k ls t s t =  and [ ]E ( ) ( ) 0k ls t s t =

where l k≠ . 

For clarity, we use subscripts nc and c to represent the quantities 
corresponding to noncircular and circular sources, respectively. 
Denote the number of noncircular and circular sources 
with ncK and cK , respectively, with nc cK K K= + . Let 

ncnc nc,1 nc,[ ( ), , ( )]Kθ θ=A a a

cc c,1 c,[ ( ), , ( )]Kθ θ=A a a

nc,nc,1 nc

ncnc nc,1 nc,{ , , }kjj

Kdiag e e
φφδ δ=B

c,c,1 c

cc c,1 c,{ , , }kjj

Kdiag e e
φφδ δ=B

ncnc, nc,1 nc,1 nc, nc,{E[ ], ,E[ ]}
ncs K Kdiag s s s s′ =R

c cc, c,1 c,1 c, c,{E[ ], ,E[ ]}s K Kdiag s s s s′ =R . 

Based on Assumption 1, s′R  is diagonal. Thus, from (4), we can 

write the matrix ′R  as two parts: one corresponds to noncircular 
signals and the other corresponds to circular signals 

T T T T
nc nc nc, nc nc c c c, c cs s′ ′ ′= +R A B R B A A B R B A            (6) 

Due to the circularity of c, ks , c, c,E[ ] 0k ks s = . Based on the 

definition of c, s′R , c, s′ =R 0 . Then, from (6), we have 
T T

nc nc nc, nc ncs′ ′=R A B R B A                           (7) 

Let T
nc, 1 nc nc, ncs s′ ′=R B R B  . (7) can be rewritten as  

T
nc nc, 1 ncs′ ′=R A R A                                (8) 

Let 

nc nc

* *
nc, nc,1 nc,1 nc, nc,{E[ ], ,E[ ]}s K Kdiag s s s s=R

c c

* *
c, c,1 c,1 c, c,{E[ ], ,E[ ]}s K Kdiag s s s s=R . 

Similarly, since sR  is diagonal, we write the matrix R in (3) as 
H H H H 2

nc nc nc, nc nc c c c, c cs s nσ= + +R A B R B A A B R B A I      (9) 

Let H
nc, 1 nc nc, ncs s=R B R B   and H

c, 1 c c, cs s=R B R B . (9) can be 

rewritten as  
H H 2

nc nc, 1 nc c c, 1 cs s nσ= + +R A R A A R A I                   (10) 

Next, we estimate the DOAs of noncircular signals based on ′R . 
The singular value decomposition (SVD) of ′R  is computed as 

H
nc,1nc

nc,1 nc, 2 H
nc, 2

′ =
V0

R U U
V0 0

                   (11) 

where nc  is a ncK -dimensional diagonal matrix and its diagonal 

elements are composed of the nonzero singular values. 
Let T * H

nc, nc, 1 nc nc nc, 1( )s s s′′ ′ ′=R R A A R .  Using (8) and (11), we have 
H H

nc nc, nc( ) s′ ′ ′′=R R A R A                            (12) 

H2
nc,1H nc

nc,1 nc, 2 H
nc, 2

( )′ ′ =
U0

R R U U
U0 0

           (13) 

Based on [2] and from (12) and (13), we have that all the 
columns of ncA are orthogonal to all the columns of nc, 2U , i.e., 

H
nc, 2 nc,( )kθ =U a 0 , for nc1, ,k K=                 (14) 

Then, we define a spatial spectrum for noncircular signals as

( ) ( ) 2H
nc nc, 2P θ θ

−
= U a                            (15) 

where  denotes 2-norm of a vector.  

From (14), it follows that nc ( )P θ  has a peak at the direction nc, kθ . 

Thus, by searching the peaks of nc ( )P θ , nc, kθ is estimated as 

nc, ncarg max ( )k P
θ

θ θ=                            (16) 

Next, we estimate the DOAs of circular signals based on the 
estimates of nc, kθ . Based on (8), we can estimate nc, 1s′R as 

              ( )†† T
nc, 1 nc ncs′ ′=R A R A                           (17)  

where †( ) represents the pseudo inverse operation, 

( ) 1† H H
nc nc nc nc

−
=A A A A  , and ( ) ( )† 1T * T *

nc nc nc nc

−
=A A A A  [13].  

Denote the kth diagonal element of nc, 1s′R  as nc, 1R ( , )s k k′ . Due to 

nc, 1 nc nc, nc
T

s s′ ′=R B R B , we have

nc,22
nc, 1 nc, nc, nc,R ( , ) E[ ]kj

s k k kk k e s sφδ′ = .            (18) 

In addition, based on Sec. 2.2, when noncircular sources emit 
AM/BPSK modulated signals, we have 

nc,2
nc, nc, nc,E[ ] kj

k k ks s e ϕσ=                     (19) 

where nc, kϕ is the noncircularity phase, and 2 *
nc, nc, nc,E[ ]k k ks sσ = . 

Substituting (19) into (18), we have 
2 2
nc, nc, nc, 1=|R ( , ) |k k s k kδ σ ′                       (20) 

Due to H
nc, 1 nc nc, ncs s=R B R B  and nc, sR  is diagonal, we have 

nc nc

2 2 2 2
nc, 1 nc,1 nc,1 nc, nc,{ , , }s K Kdiag δ σ δ σ=R           (21) 

From (20) and (21), it follows that 

nc, 1 nc, 1 nc, 1 nc nc{| R (1,1) |, ,| R ( , ) |}s s sdiag K K′ ′=R    (22) 

Therefore, based on (17), we can estimate nc, 1sR  by (22). Let 
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H
1 nc nc, 1 ncs=R A R A .                            (23) 

Then, using the DOA estimates of noncircular signals and the 
estimate of nc, 1sR  above, we obtain the estimate of 1R .         

Based on (9), we have 
H 2

1 c c, 1 cs nσ− = +R R A R A I                     (24) 

Observing the right side of (24), it is clear that the matrix 1−R R

has cK  signals eigenvectors related to cK  circular signals. Then, 

decomposing 1−R R , we obtain 
c

c

1 c, c, c, c, c, c,
1 1

K M
H H

k k k k k k
k k K

β β
= = +

− +=R R u u u u      (25) 

where the eigenvalues c, 1{ }M
k kβ =  are listed in descending order. 

Then, c, c,( )k kβ u ck K≤ are the signal eigenvalues (eigenvectors) 

and the remaining ones are the noise eigenvalues (eigenvectors). 
Denote

cc, 2 c, 1 c,[ , , ]K M+=U u u . Based on [2] and from (24) and 

(25), H
c, 2 c,( )kθ =U a 0 . Then, we define a spatial spectrum as 

( ) 2H
c c, 2 ( )P θ θ

−
= U a                            (26) 

Similarly to noncircular signals, c, kθ  is estimated as 

c, carg max ( )k P
θ

θ θ=                             (27) 

It is noted that only a finite number of sampled data is available 
in practice. Thus, R and ′R have to be estimated by 

( ) ( )H

1

(1 )
sN

s n n
n

N t t
=

=R r r and ( ) ( )T

1

(1 )
sN

s n n
n

N t t
=

′ =R r r ( sN is the 

number of samples). The perturbation of R (respectively, ′R ) from 
its true value R (respectively, ′R ) causes random perturbation of 
the parameter estimates from their true values. Through this 
paper,  ”^” denotes the estimate of the quantity over which it 
appears. Then, the proposed method is summarized below. 

Step 1) Decompose ′R to get nc, 2U  and then estimate the DOAs 

of noncircular signals as nc, kθ  by (16). 

Step 2)  using nc, kθ from step 1, obtain nc, 1sR  by (17) and (22). 

Step 3) Based on nc, kθ from step 1 and nc, 1sR from step 2, 

obtain 1R  by (23). Decompose 1−R R to get c, 2U  , and then 

estimate the DOAs of circular signals by (27) as c, kθ . 

3.2. Considerations 

1) The minimum number of antennas 
From (11) and (25), it follows that nc cmax{ , }M K K>  must be 

satisfied in order to resolve all noncircular and circular signals.  
2) The maximum number of detectable directions 

From (11), it follows that the maximum number nc, maxK of 

noncircular signals which can be detected by M antennas equals M-
1. From (25), the maximum number c, maxK  of detectable circular 

signals equals M-1. Thus, the maximum number of detectable 
directions maxK equals 2M-2 (i.e., max nc, max c, maxK K K= + ), which is 

twice that by the MUSIC method and larger than that by the 
method in [10] ( c2 2M K− − ). 

4. SIMULATIONS RESULTS

In this section, we compare the performance of the proposed 
method, the MUSIC method, and the method in [10] by 
simulations. 

4.1. The maximum number of detectable directions 

In this example, we study the case in which the number of signals 
goes beyond the traditional MUSIC limit. In simulations, circular 
sources are supposed to send QPSK symbols and noncircular 
source sends BPSK symbols. We employ a four-sensor uniform 
linear array (ULA) with interelement spacing / 2λ and consider six 
equal power sources (three noncircular sources with directions 

30− 10− , and 20 , respectively, and three circular sources with 

directions 20− , 10 , and 30 , respectively). The SNR and the 
sample number are 20 dB and 300, respectively.  

Based on Sec. 3.2, we have that the maximum number of 
detectable directions by the proposed method equals 2 2 6M − = . 
The spatial spectrums (i.e., nc ( )P θ and c ( )P θ ) for both estimators 

(16) and (27) are shown in Fig. 1. From Fig. 1, we can see that the 
noncircular estimator produces three peaks corresponding to three 
noncircular signals and so does the circular estimator. One thing to 
be emphasized that the MUSIC method fails in this case since the 
MUSIC method cannot estimate more than 1 3M − = different 
directions and the method in [10] also fails since nc c2 9K K+ = is 

larger than 2 2 6M − = . 

Fig. 1 Spatial spectrum when the number of signals is beyond the 
traditional MUISC limit. 

4.2. The effect of DOA separation 

In the first example, we employ a four-sensor ULA with 
interelement spacing / 2λ . Assume there are two equal power 
sources: one source is noncircular with a direction ncθ , and the 

other is circular with a direction cθ . We define the Average Root 

Mean Square Error (ARMSE) of DOA estimates 

as
1

1 RMSE{ }
K

k
k

K θ
=

. The SNR and the sample number are 10 dB 

and 300, respectively. ncθ  is 10  and cθ  varies from 10  to 40 . 

Thus, the DOA separation between cθ and ncθ  (i.e., c ncθ θ−  ) 

varies from 0  to 30 . Based on 200 experiments, the ARMSE 
curves of the DOA estimates by the aforementioned methods 
versus the DOA separation are shown in Fig. 2. 
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Fig. 2 ARMSE of the DOA estimates versus DOA separation. 

From Fig. 2, it is shown that the performance of the proposed 
method basically keeps invariant, which is due to the fact that the 
proposed method separates noncircular and circular signals based 
on the circularity difference between noncircular and circular 
signals rather than the DOA difference. In addition, when the DOA 
separation is larger than 10 , the performance of the proposed 
method behaves worse than the MUSIC method and the method in 
[10]. This result arises from the fact that in finite samples, 
Assumption 1 is not satisfied and the non-diagonal elements of s′R

are small but nonzero, so that (6) does not hold. In consequence, 
the matrix ′R  embodies some DOA information of circular signals 
except the DOA information of noncircular signals and so 1−R R

does, resulting in the deviation of the estimates of ncθ  and 

cθ (obtained using ′R  and 1−R R , respectively) from their true 

values. On the other hand, the performance of the proposed 
method becomes better as the DOA separation decreases. This is 
because that when the DOA separation is small, the DOA 
information of circular signals included in the matrix ′R  can be 
equivalent to that of noncircular signals since the DOA of the 
circular signal is close to that of the noncircular signal, improving 
the estimation accuracy of the noncircular signal. Similarly, in 
small DOA separation, the estimation accuracy of the circular 
signal is improved. In contrast, the MUSIC method and the method 
in [10] perform worse with decreasing DOA separation. This is 
because the two aforementioned methods estimate the DOAs of 
noncircular and circular signals simultaneously and their 
performance is dependent on the DOA separation between 
noncircular and circular signals, leading to the degradation of the 
performance in small DOA separation. The performance 
degradation of the MUSIC method has been verified in [14]. 

5. CONCLUSIONS

In this paper, by exploiting the difference between the circularity 
of noncircular and circular signals, we propose a DOA estimation 
method under the coexistence of noncircular and circular signals. 
The proposed method has two advantages compared to the MUSIC 
method. The one is that the maximum number of detectable 
directions by the proposed method is twice that by the MUSIC 
method. The other is that the proposed method can resolve 
noncircular and circular signals regardless of the DOA separation 
between the two aforementioned signals. Since the proposed 
method increases the number of detectable directions, the users in 

mobile communications can be increased with a fixed number of 
antennas. Therefore, the proposed method may be a promising 
technique to future increase the system capacity in mobile 
communications with a small number of antennas since the trend 
towards smaller mobile stations limits the number of antennas. The 
drawback of the proposed method is that in large DOA separation, 
its estimation accuracy is lower than that of the MUSIC method. 
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