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Abstract—Direction-of-arrival (DOA) estimation of two targets
with a single snapshot plays an important role in many pulsed
radar array applications. We consider the case when the targets
are spaced by more than the beamwidth of the array. In this
case, the conventional beamformer (BF) is able to resolve them,
but results in biased DOA estimation due to the leakage effect.
We propose computationally simple strategies to reduce this bias.
A novel method is presented, based on the analysis of the noise-
free BF spectrum and a local approximation. We comment on
computational cost and present simulation results.

Index Terms—Direction-of-arrival estimation, beamformer

I. INTRODUCTION

A pulsed radar system with multiple receiving antennas can
be used for target localization in terms of range, relative veloc-
ity and direction-of-arrival (DOA) [1]. An accurate description
of the environment is required in many application, such as
automotive radar for modern driver assistance systems [2].
Using radar pre-processing, which consists of pulse compres-
sion and an FFT over the pulses, the received sensor data can
be divided into processing cells corresponding to range and
relative velocity, each represented by a single snapshot [1].
There are some crucial situations, in which a superposition of
two targets occur in relevant processing cells [2]. Generally,
these cases demand computationally expensive methods for
high-resolution DOA estimation, such as subspace-based or
maximum likelihood methods [3], [4]. However, when the
targets are spaced by more than the beamwidth of the array, the
conventional beamformer (BF) is able to resolve them [5]. The
BF is computationally simple, but results in biased estimation
in the two-target case, due to leakage. This paper aims at
developing computationally simple strategies for reducing this
bias.

We remark that the bias can also be reduced by using
windows with a reduced sidelobe level, but at the cost of a
degraded resolution. An alternative approach for DOA estima-
tion of resolved targets is to iteratively subtract the targets to
perform approximately single-target DOA estimation with the
BF, as described in [6] for the frequency estimation problem.
This approach is conceptually equivalent with the RELAX
algorithm [7].

II. SIGNAL MODEL

Consider the single snapshot model with two targets

x = s1a(φ1) + s2a(φ2) + n (1)

where

a(φ) =
1√
M

[1, ejφ, . . . , ejφ(M−1)]T

is the steering vector of a uniform linear array (ULA), and
φ1 < φ2 are the DOA parameters in electrical angle; s1 and
s2 are the corresponding target response parameters, and n is
spatially white measurement noise. We consider the case such
that φ2 − φ1 > BW, where BW = 2π/M is the beamwidth
of the array.

The BF spectrum is defined as

P (φ) = |S(φ)|2 (2)

where
S(φ) = a(φ)Hdiag{w}x

is the spatial Fourier transform, and w contains the coefficients
of a window function, normalized such that ‖w‖2 = M . Given
sufficiently high SNR, the two largest local maxima of P (φ)
are close to the true DOA parameters [5].

A. Motivation

Due to the leakage effect, the DOA estimates, obtained
using the BF spectrum, can be strongly biased. This is demon-
strated by the following example.

For convenience, we use variables

δ = φ2 − φ1, and ϕ = ∠{s2} − ∠{s1}
to denote half angular separation and relative phase, respec-
tively. Also, φ0 denotes the midpoint between φ1 and φ2.

Let us consider the noise-free case with |s1| = |s2|, an array
with M = 8 sensor elements and a rectangular window. For
all combinations of δ/BW ∈ [1.5, . . . , 6.5] and ϕ ∈ [0, 2π),
we determine the two largest local maxima of the BF spectrum
in (2), denoted by φBF,1 < φBF,2. Figure 1 shows φBF,1−φ1,
which corresponds to the bias of DOA estimation with the BF,
due to leakage. It should be possible to exploit the observed
regular structure.

In this paper, we present two computationally simple strate-
gies to reduce this bias. The first is a novel method, which is
based on the analysis of the noise-free BF spectrum and a local
approximation with quadratic and linear functions. The second
method simply consists of a single iteration of the RELAX
algorithm [7].
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Fig. 1. Motivation example. Bias of DOA estimation with the BF caused by
leakage, for several combinations of δ and ϕ.

III. PROPOSED ALGORITHM

Before introducing the proposed algorithm for bias reduc-
tion, we analyze the noise-free BF spectrum and the resulting
bias of DOA estimation.

A. Noise-free BF spectrum

In the noise-free case, the spatial Fourier transform is

S(φ) = s1W (φ − φ1) + s2W (φ− φ2)

where we define

W (φ− φi) = a(φ)Hdiag{w}a(φi), i = 1, 2

The noise-free BF spectrum is then given in (3) at the top
of the next page. Note that the first two terms are auto-terms
and show peaks at exactly φ1 and φ2, respectively. However,
when superimposed, the sidelobes of the beampattern may
slightly shift the peak locations. The last term is a cross-term
and will further affect the peak locations. In the case with a
single snapshot, the influence of the cross-term overshadows
the effect of the sidelobes.

To analyze the bias caused by leakage, let us have a closer
look at the terms |W (φ− φi)|2 and W (φ − φ1)W (φ − φ2)

∗.
For convenience, we begin with the rectangular window.

1) Rectangular window: For i = 1 and 2, plugging in the
definition, and after some simplification, we obtain

|W (φ − φi)|2 =
1

M2

sin[(φ− φi)M/2]2

sin[(φ− φi)/2]2

which is the well-known squared periodic sinc function, cen-
tered around φi. In the vicinity of φi, it can be approximated
locally as a quadratic function, given by γ0 −α(φ−φi)

2 with
α ≈ π/BW2.

After some simplifications, we also obtain

W (φ− φ1)W (φ− φ2)
∗ = e−jδ(M−1)/2Q(φ)

with real-valued function,

Q(φ) =
1

M2

cos(δM/2)− cos[(φ− φ0)M ]

cos(δ/2)− cos(φ − φ0)

centered around φ0. Its shape only depends on δ. Now, we are
able to express the cross-term in (3) as

2Re{s1s∗2W (φ− φ1)W (φ − φ2)
∗} = 2|s1||s2|BQ(φ)

with scaling term B = cos[ϕ + δ(M − 1)/2]. In the vicinity
of φi, Q(φ) can be approximated locally as a linear function,
given by γi + βi(φ− φi) with

βi = lim
φ→φi

dQ(φ)

dφ

The limit does not exist. After applying l’Hôpital’s rule twice,
we obtain

β1 =
cos(δ/2) sin(δM/2)−M sin(δ/2) cos(δM/2)

2M sin(δ/2)2

β2 = −β1

2) Other window functions: For window functions, other
than the rectangular window, the local approximations are still
valid, but expressions for α and β1 are more complicated and
require numerical computation. α can be determined by means
of least-squares fitting, β1 can be determined by employing the
central first-order finite difference, for small Δ,

β1 ≈ 1

2Δ
[Q(φ1 +Δ)−Q(φ1 −Δ)]

where Q(φ) = ejδ(M−1)/2W (φ− φ1)W (φ− φ2)
∗.

Note that, for computational reasons, the values for β1 can
be stored in a 1-D lookup table as a function of δ.

3) DOA estimation bias: By applying the described local
approximations in the vicinity of φi, the noise-free BF spec-
trum from (3) can be approximated as

P̃i(φ) = |si|2[γ0 − α(φ− φi)
2] + 2|s1||s2|B[γi + βi(φ− φi)]

where we have neglected the influence of the other auto-term.
We can determine the two largest local maxima of the BF
spectrum by equating the first derivative to zero,

dP̃i(φ)

dφ
= −|si|22α(φ− φi) + 2|s1||s2|Bβi

!
= 0

Rearranging terms and plugging in B, we obtain

φBF,1 = φ1 +
1

α

|s2|
|s1| cos[ϕ+ δ(M − 1)/2]β1(δ)

φBF,2 = φ2 − 1

α

|s1|
|s2| cos[ϕ+ δ(M − 1)/2]β1(δ) (4)

So the location of the maxima of the BF spectrum is equal
to the true parameter plus a bias term, which depends on signal
parameters |s1|, |s2|, ϕ and δ. Note that the bias term depends
on a ratio between signal magnitudes, where the weaker target
will have a larger DOA bias. We propose to obtain an enhanced
estimator by subtracting this bias term.
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P (φ) = |s1|2|W (φ− φ1)|2 + |s2|2|W (φ− φ2)|2 + 2Re{s1s∗2W (φ− φ1)W (φ− φ2)
∗} (3)

B. Proposed algorithm for bias reduction

Now, consider model (1) with noise. The proposed algo-
rithm for bias reduction is summarized as follows:

1) Evaluate the BF spectrum, determine the two largest
local maxima, φ̂BF,1 and φ̂BF,2.

2) Estimate target response parameters for i = 1, 2

ŝi = a(φ̂BF,i)
H
x

3) Calculate δ̂ and ϕ̂ from φ̂BF,1, φ̂BF,2, ŝ1 and ŝ2.
4) Determine β1(δ̂) from a 1-D lookup table.
5) Estimate the corrected DOA parameters as

φ̂1 = φ̂BF,1 − 1

α

|ŝ2|
|ŝ1| cos[ϕ̂+ δ̂(M − 1)/2]β1(δ̂)

φ̂2 = φ̂BF,2 +
1

α

|ŝ1|
|ŝ2| cos[ϕ̂+ δ̂(M − 1)/2]β1(δ̂)

We remark that it is also be possible to follow a 2-D lookup
table approach, in which the full correction term from (4), but
without |s1| and |s2|, is computed numerically and stored in a
2-D lookup table of δ and ϕ, similar to Figure 1.

C. Computational aspects

Let φk, k = 0, . . . ,K − 1 be the discrete grid, required for
the spectral search; the step size is Δφ = 2π/K . The main part
of the computational cost constitutes the evaluation of the BF
spectrum in Step 1) in Section III-B, which can be efficiently
computed by using an FFT of diag{w}x, padded with K−M
zeros.

Note that without increasing K , we can improve the DOA
estimation accuracy, using a quadratic interpolation [2], [6],

φ̂i = φn[i] + 0.5Δφ
Pn[i]−1 − Pn[i]+1

Pn[i]−1 + 2Pn[i] − Pn[i]+1
(5)

where n[i] and Pn[i] = P (φn[i]) for i = 1, 2 are the index and
spectral value, respectively, of the two largest local maxima.

The calculations required in Steps 3)-5) in Section III-B,
which involve finding entries from lookup tables and simple
scalar multiply-add operations, can be implemented efficiently
and do not significantly contribute to the overall cost.

IV. RELAX FOR TWO TARGETS

The RELAX algorithm is an iterative technique for DOA
estimation of multiple targets [7]. It aims at finding the max-
imum likelihood estimate (MLE), or non-linear least squares
solution. For the case with two targets, this is to minimize

‖x− s1a(φ1)− s2a(φ2)‖2 (6)

w.r.t. φ1, φ2, s1 and s2. The principle of the RELAX algo-
rithm is to iteratively subtract the present targets in order to
perform approximately single-target DOA estimation with the

BF, which corresponds to the MLE and does not suffer from
leakage. Towards this end, let

xi = x− ŝ2−i+1a(φ̂2−i+1), i = 1, 2

where ŝ2−i+1 and φ̂2−i+1 are assumed to be given. Then, the
minimization of (6) w.r.t. φi and si can be simplified to

φ̂i = argmax
φi

|a(φi)
H
xi|2,

ŝi = a(φ̂i)
H
xi, (7)

respectively. Note that ‖a(φ)‖2 = 1. Again, the cost function is
simply the location of the dominant peak of the BF spectrum,
with a rectangular window. Hence, it can also be efficiently
computed by using an FFT. We have observed that, when the
DOA estimates are obtained using a quadratic interpolation
from (5), zero padding such that K = 4M produces satisfac-
tory results. This will be demonstrated with simulations.

As described in [7], the RELAX algorithm, for the case
with two targets, is summarized as follows:

1) Assume a single target present and estimate φ̂1 and ŝ1
from x, as in (7).

2) Assume two targets present, compute

x2 = x− ŝ1a(φ̂1)

using the previous estimates. Determine φ̂2 and ŝ2 from
x2, as in (7).
Next, compute

x1 = x− ŝ2a(φ̂2)

and redetermine φ̂1 and ŝ1 from x1.
3) Convergence check; if the relative change of (6) between

two iterations is smaller than ε = 0.01, stop. Otherwise,
continue with Step 2).

Let J denote the number of iterations until convergence.
The RELAX algorithm for two targets roughly requires 2J+1
times the computational cost of a standard DOA estimation
with the BF, as described in Section III-C. Note that generally,
the RELAX algorithm does not need the two targets to be
resolved by the conventional BF. However, in this case, many
iterations are required until convergence.

We remark that RELAX can also be implemented in the
beamspace domain [8]. Instead of computing x2, x1, and their
corresponding BF spectra explicitly in Step 2), we have

Si(φ) = S(φ)− ŝ2−i+1W (φ− φ̂2−i+1), i = 1, 2

where S(φ) has been calculated in Step 1) and W (φ), which
is stored in a 1-D lookup table, only has to be scaled and
shifted in each iteration. Note that this approach has a reduced
computational cost.
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Fig. 2. Simulation results. Averaged RMSE versus δ at SNR = 25 dB (left) and versus SNR at δ/BW = 2 (right) , M = 8 elements with 20 dB Chebyshev
window, log-normal target magnitudes and arbitrary phases.

V. SIMULATIONS

Consider an array with M = 8 elements and a Chebyshev
window with 20 dB sidelobe attenuation. Two targets from φ1

and φ2 are simulated according to (1). For a fair assessment
of the grid search DOA estimation, in each simulation run, we
add a random jitter, distributed between ±Δφ/2, to the DOA
parameters. We use s1 = 1; target magnitude and phase of s2
are distributed as

|s2| ∼ Nlog(0 dB, 3 dB), and ∠{s2} ∼ U [0, 2π)
which denote log-normal distribution and uniform distribu-
tion, respectively. The ratio of target magnitudes is chosen
random to simulate realistic radar scenarios, with fluctuating
radar cross-section [1]. n is spatially white, circular complex
Gaussian distributed with variance σ2. We define the SNR w.r.t.
the first target as 1/σ2.

For calculating estimation errors, we use physical angle θ =
sin−1(φ/π) in degrees. As a performance metric, the averaged
root mean square error (RMSE) is defined as

RMSE
2
=

1

2

[
1

MC

MC∑
m=1

(θ̂1,m − θ1)
2 + (θ̂2,m − θ2)

2

]

where θ̂1,m and θ̂2,m denote the DOA estimates in run m, and
MC = 5000 is the number of Monte-Carlo runs. The proposed
method for bias correction is compared with the conventional
BF, and the RELAX algorithm, for a single iteration and until
convergence. We also add the Cramér-Rao bound (CRB) [9].
For the spectral search, we use K = 4M .

In Figure 2, we show the simulations results versus angular
separation δ (left) at SNR = 25 dB and versus SNR (right) at
δ/BW = 2. Due to leakage, the conventional BF results in an
average error larger than 1◦. Using the proposed method for
bias correction, we are able to reduce the average error below
0.5◦ without significantly more computations. Note also that
for δ > 1.5BW, a single iteration of RELAX is very close to

convergence, and almost achieves the CRB; the computational
cost is roughly three times the computational cost of a standard
DOA estimation with the BF.

VI. CONCLUSIONS

In this paper, we have considered the problem of DOA
estimation of two resolved targets with a single snapshot. We
have presented a novel method for bias reduction, which is
based on the analysis of the noise-free BF spectrum and a
local approximation. The presented method is computationally
simple. The simulations results suggest that it achieves almost
equivalent results with the RELAX algorithm in the moderate
SNR case.
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