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ABSTRACT   

A Khatri-Rao (KR) product based method for direction-of-
arrival (DOA) estimation using uniform linear array (ULA) 
in the presence of mutual coupling is presented. Based on 
the fact that mutual coupling matrices of ULAs can be 
modeled as banded complex symmetric Toeplitz matrices, a 
cost function with the form of KR product is derived. An 
alternating minimization procedure is employed to estimate 
the DOAs of all the radiating signals as well as the mutual 
coupling coefficients and the power of signals. Simulation 
results that demonstrate the validity of the proposed method 
are included. 

Index Terms— Array Signal Processing, Mutual 
Coupling, Direction of Arrival Estimation

1. INTRODUCTION 

Direction-of-arrival (DOA) estimation of multiple 
narrowband signals has been widely investigated by the 
signal processing community [1]. Many high-resolution 
methods have been proposed [2-3]. However, the 
performance of these methods may be seriously degraded by 
the unknown manifold errors, such as the mutual coupling 
between neighboring array elements [4-5].  

In the last decades, many calibration methods have been 
proposed. The most likely way for mutual coupling 
calibration is to make use of extra sources with known 
locations, namely, calibration sources. B. C. Ng et al. [6] 
proposed a maximum likelihood calibration method to 
compensate the mutual coupling as well as gain, phase and 
position errors. However, the procedure of mutual coupling 
calibration with calibration sources has the drawback of 
being time consuming. Alternatively, another kind of array 
calibration methods, named auto-calibration, is more 
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preferable. In [4], Friedlander et al. proposed an iterative 
method that provides estimates of the DOAs of all the 
radiating sources as well as calibration of gain/phase of each 
array element and mutual coupling of the receiving array. 
Sellone et al. proposed another iterative method, which 
alternatively minimizes a cost function with respect to two 
complex symmetric Toeplitz matrices and a complex 
Hermitian Toeplitz matrix [7]. Ye et al. proposed a mutual 
coupling calibration method by setting a group of auxiliary 
sensors in a uniform linear array (ULA) [8]. 

In this paper, a new DOA estimation method is proposed 
for ULAs in the presence of mutual coupling. It is based on 
the observation that the mutual coupling matrix for a ULA 
can be modeled as a banded complex symmetric Toeplitz 
matrix [4]. A cost function derived from Khatri-Rao (KR) 
product is minimized alternatively with respect to a complex 
symmetric Toeplitz matrix with complex symmetric 
Toeplitz sub-matrices, the KR product of the array manifold 
matrix, and the powers of signals. 

The rest of the paper is organized as follows. In Section 
2, the signal model is introduced, while the DOA estimation 
method is described in detail in Section 3. In Section 4 
simulation results are given. Finally, some conclusions are 
drawn in Section 5. 

2. MUTUAL COUPLING MODEL 

Consider K  far-field, narrowband signals ( )ks t ,
 impinging on a ULA of 1, 2, ,k = � K M  omnidirectional 

sensors with inter-sensor spacing d  in the presence of 
additive Gaussian noise. Ignoring the mutual coupling 
between the array elements, the output of the mth sensor can 
be described as 

2 ( / )( 1) sin( )
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where  is the wavelength of the narrowband signal,  is 
the DOA of the kth signal, and is the additive noise of 
the mth sensor.

λ kθ
( )mn t

  Let  and similarly define 
and . The matrix formulation of (1) can be written as 
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, (2) ( ) ( ) ( )t t= +x As n t

t

where  is the so-called array 
manifold matrix. The steering vector  is defined as 

1 2[ ( ), ( ), , ( )]Kθ θ θ=A a a a�
( )θa

, (3) 2 ( / ) sin( ) 2 ( 1)( / ) sin( )( ) [1, , , ]j d j M d Te eπ λ θ π λ θθ − − −=a �
 Now we consider the mutual coupling between the array 

elements. In practice, interactions between array elements 
will result in mutual coupling. The mutual coupling 
coefficient is dependent on the distance between the 
elements and the magnitude decreases quite fast as the 
distance increases. As a result the outputs of the array 
should be modified as 

, (4) ( ) ( ) ( )t t= +x CAs n
where  is an C M M×  complex mutual coupling matrix 
(MCM), which can be modeled as a banded symmetric 
Toeplitz matrix [4] as follows: 
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where , , .1 1[1, , , ]T
Pc c −=c � 1 11 | | | | 0Pc c −> > > >� P M<

Our work is based on the assumptions that: 
a) The signals are zero-mean and stationary, mutually 

independently with each other; 
b) The noises are zero-mean and spatially white, 

statistically independent with the signals, and have the 
same variance; 

c) All signals come from different directions. 
Based on the above assumptions, the covariance matrices 

of the noise vector, signal vector and array output vector are 
, (6) 2{ ( ) ( )}H

n ME t t σ=n n I
2 2 2
1 2{ ( ) ( )} {[ , , , ] }H T

s KE t t diag σ σ σ= =R s s � , (7) 
2{ ( ) ( )}H H H

x sE t t σ= = +R x x CAR A C In M , (8) 
where  denotes statistical expectation and the 
superscript 

{ }E �
H  denotes conjugate transpose,  is the power 

of noise of each array element,  is the power of signal 

2
nσ

2
kσ

( )ks t , and MI  is the M M×  identity matrix. 

3. DOA ESTIMATION IN THE PRESENCE OF 
MUTUAL COUPLING 

 
3.1 Introductory theorems 

 
We use the symbol �  to denote the KR product. For two 
matrices:  and  with the same number of 
columns, the KR product of them is defined as [9] 

m k×∈A � n k×∈B �

, (9) 1 1 2 2[ , , , k k= ⊗ ⊗ ⊗A B a b a b a b� �

where  denotes the Kronecker product and ,  are the 
ith column of   and B , respectively. 

⊗ ia ib
A

Here we incorporate a useful property of KR product. 
We just give the conclusion and the proof can be found in 
[9]. 
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. Then 

, ,m k n k k× ×∈ ∈ ∈A B d� �
( )diag=D

, (10) *( ) (Hvec =ADB B A d�
In order to develop the proposed method, it is convenient 

to introduce two useful lemmas. 
Lemma 1 [4]: If  and ,
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where  is defined in Lemma 1. 1[ ]T �
Proof: The proof of lemma 1 is given in [4], and the proof 

of lemma 2 is similar. 

3.2 DOA estimation 

Let ,2 2 2
1 2[ , , , ]T

s Kσ σ σ=r � 2
x x nσ= −S R IM , from (7-8) we 

get 
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( ( ))( )H
x sdiag=S CA r CA , (19) 

In light of property 1, we have 
* * *( ) (( ) ( )) ( )( )x s svec = = ⊗S CA CA r C C A A� � r

)

, (20) 
From lemma 2, we can conclude that  can be 

determined by . On the other hand, 
is a matrix function of . Once the number 
of signals 

* ⊗C C
( )Hvec=c cc� *(A A�

1 2[ , , , ]T
Kθ θ θ=� �

K  is known, reasonable estimates of DOAs can 
be obtained by minimizing the following cost function with 
respect to c , �  and � sr

, (21) * *|| ( ) ( )( ) ||xJ vec= − ⊗S C C A A r� 2
s

where  indicates the Euclidean norm of a vector. A 
necessary condition for uniqueness of the solution is 

.

|| ||�

2(2 ) 2 2( 1)K M K K P− ≥ + −
Since a closed-form solution of such a problem is 

extremely difficult to be found, we propose an alternating 
minimization iterative technique as follows. 
1) minimize  J  with respect to c�

, (22) * *min || ( ) ( )( ) ||xvec − ⊗
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     Then the estimate of  can be given as * ⊗C C
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where P
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Since is a known continuously differentiable 
function of , we make use of gradient descent algorithm to 
get the solution. 

*A A�
�

3) Minimize J  with respect to sr
, (28) * *min || ( ) ( )( ) ||

s
x svec − ⊗

r
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The closed-form solution is given by 
* * #(( )( )) ( )s xvec= ⊗r C C A A S� , (29) 

3.3 Numerical implementation 

Let us suppose that N snapshots of the array output vector 
 are available for processing. Here we 

assume the number of signals 
( ), 1,2, ,t t N=x �

K  and mutual coefficients 
are known. The proposed method can be described as 
follows. 

P

a) Preprocess
The first step is to estimate the array covariance matrix xR .
It can be done by adopting the sample covariance matrix 

1

1ˆ ( ) ( )
N

H
x

t
t t

N =

= �R x x , (30) 

    Subsequently, the noise power  is estimated as the 

mean of the 

2
nσ

M K−  smallest eigenvalues of ˆ
xR , denoted as 

.2ˆnσ
Then the estimate of xS  is given by 2ˆ ˆ ˆx x n Mσ= −S R I .

b) Initialization 
The initial values of C can be selected from previous 
knowledge, or just initialized as an identity matrix when no 
previous knowledge is available. The initial values of  �
can be obtained using other DOA estimation algorithms, 
where mutual coupling is taken into account or not. For 
simplicity, we just incorporate the basic MUSIC algorithm 
ignoring the mutual coupling. With the initial C  and ,�

sr is initialized as (29).  
The remaining steps of the algorithm are alternating 

minimization steps described in the last sub-section, and it is 
implemented iteratively for a preset times. 

4. COMPUTER SIMULATIONS 

In this section, some computer simulations are reported to 
demonstrate the behavior of the proposed method. Herein 
we compare the performance of the proposed method with 
the one proposed in [8] and MUSIC without taking mutual 
coupling into account. 

We consider a ULA consisting of  sensors with 
inter-sensor spacing . The simulation model 
consists of two signal arriving at angles  and .We 
use simulated signal vectors and noise vectors drawn from a 
complex Gaussian distribution with zero mean and 
covariance matrices  and ,
respectively. The mutual coupling is assumed to be 
negligible at a distance larger than1.5

8M =
/ 2d λ=

11− 	 7	

2 2 2
1 2{[ , , , ] }T

Kdiag σ σ σ� 2
n Mσ I

λ  and hence .
The mutual coupling vector is assumed to be 

, for which 

3P =

[1,0.43301 0.25 ,0.14142 0.14142 ]Tj= − −c j
2
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there are no blind angles [8]. Experimental results are 
shown in Figs. 1-3. 

Fig.1 shows the reduction of DOA estimation errors for a 
trial during the iterative procedure, when the number of 
snapshots is 500 and the SNR of both signals are 0dB. It 
demonstrates that convergence is reached in approximately 
25 iterations. So it is reasonable to set the number of 
iteration to 60 as we done in the following experiments. 

To compare the statistical performance of the proposed 
method with the method in [8] and MUSIC, the following 
Monte Carlo simulations have been realized. 500 Monte 
Carlo trials for each condition are performed. The root mean 

squared errors (RMSE) of DOAs of the three methods and 
the Cramer-Rao Bound (CRB) are compared in the same 
scenario.
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Fig.1 DOA estimation errors versus iteration number

Fig.2 illustrates RMSE of the estimated DOAs versus 
SNR (from -10 dB to 5dB). Here the number of snapshots is 
fixed to 500. The results demonstrate that, for low SNR, the 
DOAs estimations are more accurate by using the proposed 
method. The reason is that, in the method [8], just the 
middle subarray is used to estimate the DOAs. 

Fig.3 illustrates RMSE of the estimated DOAs versus the 
number of snapshots (from 200 to 2000). Here the SNR is 
fixed to -5dB. The results demonstrate that the DOA 
estimates are more accurate by using the proposed method. 
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Fig. 2 RMSE of the DOA estimates versus SNR. The number of 
snapshots is 500.

5. CONCLUSIONS 

A new method of DOA estimation tailored for ULA in the 
presence of mutual coupling has been proposed. We 
deduced a cost function based on the KR product. Taking 
the symmetric Toeplitz structure into account, we developed 
an alternating minimization procedure to solve the DOA 
estimation problem. Computer simulation results have 
showed the effectiveness of the proposed method. 
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