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ABSTRACT

Improved capacitive touch screen responsiveness can be

achieved at the expense of the touch screen controller analog

hardware complexity and power consumption. This paper

proposes a compressive sensing based approach to exploit the

sparsity of simultaneous touches (e.g., 10 or less per person)

with respect to the number of sensor nodes (e.g., 100s) to

achieve similar levels of responsiveness with lower levels of

analog complexity and power consumption. This is done by

showing that the number of measurements required for touch

detection is related to the number of touches rather than the

number of nodes.

Index Terms— compressive sensing, capacitive touch

screens

1. INTRODUCTION

Capacitive touch screens[1] are used for smartphones, tablets,

track pads and kiosks. Trends towards larger screen sizes cou-

pled with battery power limitations place increasing demands

on the touch screen controller performance.

Improved capacitive touch screen responsiveness can be

achieved at the expense of the touch screen controller ana-

log hardware complexity and power consumption. This pa-

per proposes a compressive sensing based approach to exploit

the sparsity of simultaneous touches (e.g., 10 or less per per-

son) with respect to the number of sensor nodes (e.g., 100s) to

achieve similar levels of responsiveness with lower levels of

analog complexity and power consumption. This is done by

showing that the number of measurements required for touch

detection is related to the number of touches rather than the

number of nodes.

Figure 1 shows the typical structure of a capacitive touch

screen. Two layers of indium tin dioxide (ITO) electrodes are

laid over a LCD screen. A layer of dielectric material (usually

made of plastic or pyrex glass) is located between the two

layers of electrodes.

Consider a touch screen layout with M row electrodes

and N column electrodes, such that there are MN capaci-

tance sensors or nodes with a parasitic capacitance C at the
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intersection of each column and row electrode. A finger close

to a node shunts a portion of the electrical field to ground,

which is equivalent to adding a capacitance ΔC in parallel

with C. Therefore, the sensed capacitance on the node be-

comes C = C +ΔC.

Each node on the touch screen can be viewed as a pixel

in an image. After calibrating C out of C, the remaining ΔC
on each node effectively constitutes a 2D image of touches.

Touches can be detected as peaks in the image with properties

such as finger size, shape, orientation and pressure reflected

in the shapes of the peaks. Assuming a small number of fin-

gers relative to number of nodes, the image is sparse and it is

possible to develop compressive sensing based approaches to

touch sensing.

This paper is organized as follows. Section 2 describes a

capacitance sensing technique using charge transfer which is

adopted in section 3 for the development of a column based

sparse touch sensing scheme. Extensions to full panel sparse

touch sensing are described in section 4.

C

C

Fig. 1. A typical layout of a capacitive touch screen

2. CAPACITANCE MEASUREMENT BY CHARGE
TRANSFER

Charge transfer[2] is a popular method for measuring capac-

itance on capacitive touch screens. As shown in Figure 2,

charge transfer is realized in 2 stages: the pre-charge stage

and the transfer stage.

In the pre-charge stage, the unknown capacitor C is

charged with a known voltage source Vdrive such that in
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steady state the charge Q is

Q = VdriveC. (1)

In the transfer stage, a known reference capacitor Cref

is connected in parallel with C such that the charge on C is

transferred onto Cref . Denoting the potential over Cref as

Vsense, according to the conservation of total charge, we have

VdriveC = Vsense(C + Cref ) (2)

which can be rearranged as

Vsense =
C

C + Cref
Vdrive. (3)

If Cref � C, we have

Vsense ≈ C

Cref
Vdrive (4)

which allows us to estimate the capacitance as a proportional

relationship between the drive and sense voltages.

An alternative topology for charge transfer is shown in

Figure 3. An operational amplifier is utilized and the polarity

of Vsense is inverted. This measurement topologies also yield

a proportionality relationship between drive and sense voltage

as a function of the capacitance:

Vsense = gCVdrive = gQ, (5)

where g is a constant.

C CrefC

Pre-charge Transfer

++ ++ ++ ++ ++ ++

- - - - - - - - - - - -
VsenseVdrive

Fig. 2. Charge transfer technique

C

Cref

Vsense

Fig. 3. Alternative charge transfer circuit

3. COLUMN BASED SPARSE TOUCH SENSING

3.1. Setup

Consider a column-wise sensing scheme in which all elec-

trodes in a row are driven with the same voltage in the pre-

charge stage, but each row could have a different voltage. In

the measurement stage, the charges over each column elec-

trode are converted into a voltage signal in sequential order.

The two stage measurement process is repeated K times, each

with a distinctive set of row driving voltages.

Now consider the n-th (n = 0, ..., N − 1) column elec-

trode. Denote Cm,n,m = 0, ...,M − 1 as the node capaci-

tance at the intersection of row m and column n. Also denote

the driving voltage at row m for column n during the k-th

(k = 0, ...,K − 1) pre-charge stage as V k
m,n. In the transfer

stage all the nodes of column n are connected in parallel and

the charge accumulated over all n nodes is transferred onto a

reference capacitor to induce a sensed voltage:

vkn = gQ = g

M∑
m=1

Cm,nV
k
m,n. (6)

Then K measurements can be combined into the following

linear equation:

⎡
⎢⎣

v0n
...

vK−1
n

⎤
⎥⎦ = g

⎡
⎢⎣

V 0
0,n · · · V 0

M−1,n
...

. . .
...

V K−1
0,n · · · V K−1

M−1,n

⎤
⎥⎦

⎡
⎢⎣

C0,n

...

CM−1,n

⎤
⎥⎦ . (7)

Written in matrix form and ignoring the proportionality con-

stant g we have

vn = Φncn, (8)

with the following definitions for vectors

vn =
[
v0n · · · vK−1

n

]T
, (9)

cn =
[
C0,n · · · CM−1,n

]T
, (10)

and for the pre-charge matrix

Φn =

⎡
⎢⎣

V 0
0,n · · · V 0

M−1,n
...

. . .
...

V K−1
0,n · · · V K−1

M−1,n

⎤
⎥⎦ . (11)

The vector cn can be recovered from voltage measure-

ments vn as long as Φn is full rank, which requires K ≥ M
, i.e., the number of voltage measurements is not less than the

number of nodes on that column. The simplest form of Φn is

an identity matrix, which corresponds to the case where each

row is driven sequentially in the pre-charge stage.

3.2. Sparsity of touches

Generally speaking, it is impossible to uniquely recover cn
from vn if K < M because the system of equations would

be under-determined. However, if we know that the solution

is sparse, cn can potentially still be uniquely resolved using

compressive sensing[3].

The key assumption is that the number of touches is

sparse compared with the number of nodes on the screen.
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This assumption can also be extended to each column of

nodes, meaning that only a small number of nodes on each

column are touched simultaneously.

Denote the parasitic capacitance of column n as

c̄n =
[
C̄0,n · · · C̄M−1,n

]T
. (12)

The capacitance changes caused by touches on column n are

Δcn = cn − c̄n, (13)

where Δcn is assumed to be sparse (i.e., there are only a small

number of non-zero entries in Δcn). Combining equations

(8) and (13), rearranging terms and defining vc
n as the cali-

brated voltage measurements for column n we can write

vc
n = vn −Φnc̄n = ΦnΔcn (14)

for the case of perfect calibration and

vc
n = ΦnΔcn + en (15)

for the case of calibration error en.

Equation (15) is a classic problem in compressive sensing.

If Φn is an random Gaussian or Bernoulli matrix and Δcn has

a sparsity of s, with K = O(s log(M/s)) measurents Δcn
can be uniquely recovered with an overwhelming probability

by solving

min ‖Δcn‖1 s.t. ‖vc
n −ΦnΔcn‖2 ≤ ε, (16)

where ε is a bound for the calibration error.

In practice, it is difficult or costly to implement Φn as

a random Gaussian or Bernoulli matrix. [4] shows that ran-

dom Toeplitz or circulant matrices are as effective as random

matrices. Moreover, these matrices can be easily realized in

hardware (e.g., by performing a circular convolution with a

random sequence) and permit much faster decoding.

3.3. Large sensor spacing topology

First consider the case of where the distance between each

node is much larger than the size of touching objects (e.g.,

fingers). As a result, a touch object could only induce capac-

itance changes in nodes in a close vicinity of the touch. For

this case cn is sparse and can be recovered according to (16).

Figure 4 shows a sensing example with large sensor spac-

ing topology. Each entry in the pre-charge matrix follows

a random Bernoulli distribution such that each node is ran-

domly charged with {+V, -V} voltages. Figure 5 shows the

recovered cn according to (16). In this example a successful

recovery is achieved at a compression ratio of 8.

3.4. Small sensor spacing topology

Next consider the case where the distance between each node

is small compared with the size of the touching object. As
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Fig. 4. Large sensor spacing topology: M = 256,K = 32

ΔC

column nodes

Fig. 5. Recovery with large sensor spacing topology

a result, multiple nodes are influenced by a single touch and

Δcn is not sparse in its current form.

The key for this case is to find a sparsifying basis Ψ such

that the projection αn of Δcn under Ψ is sparse, and modify

the recovery algorithm in (16) to include the sparsifying basis

min ‖αn‖1 s.t. ‖vc
n −ΦnΨαn‖2 ≤ ε (17)

Δcn = Ψαn.

Figure 5 shows a recovery example of Δcn under the small

sensor spacing topology assumption with a DFT matrix used

as the sparsifying matrix Ψ.

column nodes

ΔC

Fig. 6. Recovery with a small sensor spacing topology. M =
256,K = 32

For topologies other than the above mentioned cases, it is

essential to find an appropriate sparsifying basis. This could

be accomplished by either investigating a class of commonly

used basis (e.g. DFT, DCT, wavelet, curvelet, etc.) or learn-

ing the sparsifying basis from the data with the K-SVD al-

gorithm [5]. Once the sparsifying basis Ψ is determined, the
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pre-charge matrix Φn can be further optimized [6] to mini-

mize the mutual coherence between Ψ and Φn. As a result,

the number of minimally required measurements can poten-

tially be further reduced.

3.5. Constrained optimization

There are two main classes of algorithms used to solve

the constrained �1 optimization problems in (16) and (17):

linear/convex optimization [7] and greedy algorithms [8].

Greedy algorithms are attractive in terms of hardware realiza-

tion due to their computational simplicity.

For this specific problem, two additional characteristics

of Δcn can be exploited. First, the nonnegative assumption

of Δcn leads to a variant of the matching pursuit algorithm

in [9] that is guaranteed to find the sparse solution if Φn

is properly designed. Second, for small to medium sensor

spacing topologies, the nonzero entries in Δcn will be clus-

tered in the vicinity of the touch points instead of sporadi-

cally. Model-based compressive sensing theory [10] can be

applied to enhance the recovery algorithm according to this

block-wise sparsity characteristic.

4. FULL PANEL SPARSE TOUCH SENSING

The column-wise compressive sparse touch sensing scheme

can be easily extended to a full panel sensing scheme using a

sensing architecture which is similar to the single pixel cam-

era architecture for compressive imaging[11].

As shown in Figure 7, each node is driven with a control-

lable voltage source in the pre-charge stage. In the transfer

stage, all MN nodes are connected in parallel such that the

charges accumulated over each individual node are mixed to-

gether and transferred onto a reference capacitor to derive a

voltage measurement. Recovery then proceeds in a manner

similar to that of the column based case.

The proposed full panel sparse touch sensing scheme is

able to minimize the relative sparsity of active touches com-

pared with the total number of sensors. Therefore, the total

number of measurements is minimized given the same maxi-

mum active touch points assumption.

Pre-charge Voltage Controller

Fig. 7. Full panel compressive sparse touch sensing requires

MN voltage drives.
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