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ABSTRACT

In motor imagery-based Brain Computer Interfaces (BCIs),

Common Spatial Pattern (CSP) algorithm is widely used

for extracting discriminative patterns from the EEG sig-

nals. However, the CSP algorithm is known to be sensitive

to noise and artifacts, and its performance greatly depends

on the operational frequency band. To address these is-

sues, this paper proposes a novel Sparse Multi-Frequency

Band CSP (SMFBCSP) algorithm optimized using a mu-

tual information-based approach. Compared to the use of

the cross-validation-based method which finds the regular-

ization parameters by trial and error, the proposed mutual

information-based approach directly computes the optimal

regularization parameters such that the computational time is

substantially reduced. The experimental results on 11 stroke

patients showed that the proposed SMFBCSP significantly

outperformed three existing algorithms based on CSP, sparse

CSP and filter bank CSP in terms of classification accuracy.

Index Terms— Brain-Computer Interface, Common Spa-

tial Pattern, Mutual Information, Sparse Regularization.

1. INTRODUCTION

A brain-computer interface (BCI) measures, analyzes and de-

codes brain signals to provide a non-muscular means of con-

trolling a device [1]. Most BCIs use electroencephalography

(EEG) to measure brain signals due to its low cost and high

temporal resolution [1]. Among EEG-based BCIs, the de-

tection of motor imagery has attracted increased attention in

recent years, which is neurophysiologically based on the de-

tection of sensorimotor rhythms called event-related desyn-

chronization (ERD) or synchronization (ERS) during motor

imagery [2]. Interestingly, it was shown that motor imagery

based BCI is effective in restoring upper extremities motor

function in stroke [3]. However, the detection of sensorimotor

rhythms is generally impeded by poor spatial specifications of

EEG due to the volume conduction and different sources of

noise and artifacts [4]. Moreover, the discriminative spatio-

spectral characteristics of motor imagery vary from one per-

son to another. Thus, extracting discriminative spatio-spectral

features is a challenging issue for EEG-based BCIs.

Among various feature extraction methods, the common

spatial pattern (CSP) algorithm has been proven to be effec-

tive in discriminating two classes of motor imagery tasks [4].

Despite its known efficiency and widespread use, the CSP is

highly sensitive to noise and artifacts [5], and its performance

greatly depends on the operational frequency band [4].

Recently, regularization algorithms were introduced to ro-

bustify the CSP against noise and artifacts [6, 5]. In [5] it was

shown that regularizing the CSP objective function generally

outperformed regularizing the estimates of the covariance ma-

trices. More recently, We proposed a new sparse common

spatial pattern (SCSP) algorithm by inducing sparsity in the

CSP spatial filters [7, 8]. The proposed SCSP algorithm op-

timizes the spatial filters to emphasize the regions that have

high variances between the classes, and attenuates the regions

with low or irregular variances which can be due to noise or

artifacts. However, a broad fixed frequency range was used

for the regularized CSP algorithms. Studies have shown that

simultaneous optimization of the CSP spatial filters and fre-

quency filters yielded more effective features. For example,

Sub-band CSP decomposed EEG signals into multiple fre-

quency bands, and determined the classification capability of

each band based on the corresponding CSP features [9]. Fil-

ter bank common spatial pattern (FBCSP) combined a filter

bank framework with CSP, and selected the most discrimina-

tive features using a mutual information based criterion [10].

The FBCSP algorithm was used as the basis of all the winning

algorithms in the EEG category of the BCI competition IV.

Therefore, the issue of choosing the optimal spectral

band for the regularized CSP has not been addressed yet.

To address this issue, this paper proposes a novel sparse

multi-frequency band common spatial pattern (SMFBCSP)

algorithm optimized using a mutual information based ap-

proach. The proposed algorithm combines a filter bank

framework with SCSP to automatically select subject-specific

discriminative frequency bands as well as to robustify against

noise and artifacts. The proposed SMFBCSP algorithm di-

rectly computes the optimal regularization parameters using

a mutual information-based approach, instead of finding

the regularization parameters by trial and error using the
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cross-validation approach which may not be computation-

ally tractable in a filter bank framework. The performance

of the proposed algorithm is evaluated on data collected

from 11 stroke patients performing motor imagery on the

stroke-affected hands [3]. The classification accuracies of the

proposed algorithm are compared with the results from three

existing algorithms, namely, CSP, SCSP and FBCSP.

2. METHOD

The proposed SMFBCSP algorithm performs consecutively

multi-band spectral filtering and sparse spatial filtering to ex-

tract and select most discriminative features. The proposed

methodology comprises the following steps:

Step 1) Multi-band spectral filtering: The first step uses

a filter bank that decomposes the EEG data using nine equal

bandwidth filters, namely 4-8, 8-12, ..., 36-40 Hz as proposed

in [10]. These frequency ranges cover most of the manually

or heuristically selected settings used in the literature.

Step 2) Sparse spatial filtering: In this step, the EEG data

from each frequency band are spatially filtered using optimal

sparse CSP filters [7]. Let Xb ∈ RNc×S denote a single-

trial EEG data from the bth band-pass filter, where Nc and S
denote the number of channels and number of measurement

samples respectively. A linear projection transforms Xb to

spatially filtered Zb as

Zb = w∗
bXb, (1)

where each row of the transformation matrix w∗
b ∈RNl×Nc

indicates one of the Nl sparse spatial filters. How to find the

optimal sparse CSP filters corresponding each frequency band

is explained in Section 2.1 in detail.

Step 3) Feature extraction: The sparse spatio-spectrally

filtered EEG data are used to determine the features asso-

ciated to each band-pass frequency range. Based on the

Ramoser formula [11], the features of the kth trial of the

EEG data from the bth band-pass filter are given by

vb,k = log(diag(Zb,kZ
T
b,k)/trace[Zb,kZ

T
b,k]), (2)

where vb,k ∈ R1×Nl ; diag(.) returns the diagonal elements

of the square matrix; trace[.] returns the sum of the diagonal

elements of the square matrix; and the superscript T denotes

the transpose operator. Since we have nine frequency bands,

the feature vector for the kth trial is formed using

Vk = [v1,k,v2,k, ...,v9,k]. (3)

where Vk∈R1×9Nl .

Step 4) Feature selection: The last step selects the most

discriminative features of the feature vector V. Various fea-

ture selection algorithms can be used in this step. Based on

the results presented in [10] the Mutual Information-based

Best Individual Feature is used to select four pairs of features.

2.1. Optimizing sparse spatial filters using mutual infor-
mation

The second step of the proposed algorithm performs spatial

filtering using optimized sparse CSP filters. Despite the popu-

larity and efficiency of the CSP algorithm, the CSP algorithm

which is based on the covariance matrices of EEG trials can

be distorted by artifacts and noise. This issue motivated the

approach to sparsify the CSP spatial filters to emphasize on

the regions with high variances between the classes, and to

attenuate the regions with low or irregular variances that may

be due to noise or artifacts. To sparsify the CSP spatial filters

of the bth band, first we formulate the CSP algorithm as an

optimization problem, thereafter the sparsity is induced in the

CSP algorithm by adding an l1/l2 norm regularization term to

the optimization problem as presented in [8]. The proposed

SCSP algorithm is then formulated as:

min
wb,i

(1−r)(

i=m∑

i=1

wb,iCb,2wT
b,i+

i=2m∑

i=m+1

wb,iCb,1wT
b,i)+r

i=2m∑

i=1

‖wb,i‖1
‖wb,i‖2

Subject to: wb,i(Cb,1 + Cb,2)wT
b,i =1 i ={1, 2, ..., 2m}

wb,i(Cb,1 + Cb,2)wT
b,j = 0 i, j = {1, 2, ..., 2m} i �= j,

(4)

where Cb,1 and Cb,2 are the covariance matrices of the band-

passed EEG data of each class respectively. The unknown

weights wb,i∈R1×Nc , i= {1, .., 2m}, respectively denote the

first and last m rows of the CSP projection matrix from the

bth band-pass filter. r (0≤ r≤ 1) is a regularization param-

eter that controls the sparsity and the classification accuracy.

When r=0, the solution is essentially the same as the CSP

algorithm. Increasing r results in more sparse spatial filters,

whereas it may decrease the accuracy because some useful

information is lost. Therefore, the optimal r value should be

chosen in a way to yield more efficient features.

The existing regularized CSP algorithms generally use the

cross-validation method on the train data to automatically se-

lect the regularization parameters [5]. However, performing

m×n-fold cross-validation for a set of different regularization

values is computationally intensive. Particularly in our study

the problem is more pronounced, due to employing a sepa-

rate SCSP for each band, whereas the value of regularization

parameter may differ from band to band. As an example, if

we would like to evaluate only 5 differentrvalues for each of

nine frequency bands, the m×n-fold cross-validation should

be performed for 59 different combinations.

To reduce the amount of computation, this paper proposes

a mutual information based algorithm to directly estimate the

r value. Based on the proposed algorithm, the optimal r value

and consequently the optimal SCSP filters from the bth band-

pass filter are found as follows:

1- For each r value from a predefined set R, r ∈ R =
{r1, r2, ..., rn}, obtain the corresponding sparse spatial filters

wr
b,i, i={1, ..., 2m}, from the bth band by solving (4).
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2- Initialize the set of features Fb=[Fb,r1 ,Fb,r2 , ...,Fb,rn ]
as given in (2) from the training data, where Fb,rj ∈Rnt×2m

denotes the features obtained from SCSP filters when r=rj ,

and nt denotes the total number of training trials. In this

work, the ith column vector of Fb,rj is presented as fb,rj ,i.
3- Compute the mutual information of each feature vector

fb,r,i with the class label Ω={1, 2} using:

I(fb,r,i; Ω) = H(Ω)−H(Ω|fb,r,i) , (5)

where H(Ω) is the entropy of the class label defined as:

H(Ω) = −
2∑

Ω=1

P (Ω) log2 P (Ω) ; (6)

and the conditional entropy is

H(Ω|fb,r,i)=−
2∑

Ω=1

nt∑

k=1

P (Ω|fb,r,i,k) log2 P (Ω|fb,r,i,k) , (7)

where fb,r,i,k is the ith feature value of the kth trial from Fb,r,

and P is the probability function. The conditional probability

P (Ω|fb,r,i,k) can be computed using Bayes rule given in (8)

and (9).

P (Ω|fb,r,i,k) = (P (fb,r,i,k|Ω)P (Ω))/P (fb,r,i,k) , (8)

P (fb,r,i,k) =
2∑

Ω=1

P (fb,r,i,k|Ω)P (Ω) . (9)

The conditional probability P (fb,r,i,k|Ω) can be esti-

mated using the Parzen Window algorithm[10].

4- Find the feature with the highest mutual information

computed in step 3. The r value corresponding to this fea-

ture is selected as the optimal regularization parameter for the

SCSP from the bth frequency band. Mathematically, this step

is performed as follows:

I(fb,r∗,i∗ ; Ω) = max
i={1,...,2m}

r∈R

I(fb,r,i; Ω) , (10)

where r∗ denotes the regularization parameter constructing

the optimal SCSP filters from the bth frequency band.

The mutual information I(fb,r,i; Ω) evaluates the reduc-

tion of uncertainty by the feature vector fb,r,i [10]. Maximiz-

ing the objective function (10) results in the r value which

produces a feature with the highest relevance with the class

labels. We would like to stress that the proposed new algo-

rithm in selecting the regularization parameter is not limited

to the SCSP. On the contrary, it is applicable for all general

regularized CSP settings that require automatic selection of

regularized parameters.

3. EXPERIMENTS

25 channels data were collected from 11 hemiparetic stroke

patients who used motor imagery-based BCI with robotic

feedback neurorehabilitation [3]. This study only used the

data collected from the calibration phase of this experimental

dataset (refer NCT00955838 in ClinincalTrials.gov). This

phase acquired a total of 160 EEG trials that comprised 80

motor imagery trials of the stroke-affected hand, and 80 rest

condition.

This study compared the classification accuracies of the

proposed SMFBCSP algorithm with three existing algo-

rithms, namely, CSP [4], SCSP [7] and FBCSP [10], using

10-folds cross-validation. In all the algorithms, the EEG data

from 0.5 to 2.5 s after the visual cue were used (as done by

the winner of BCI competition IV, data set IIa). In the CSP

algorithm, the EEG signals were filtered into 8 to 35 Hz using

elliptic filters. Thereafter the CSP filters were used to find

the features. In the SCSP algorithm, the EEG signals were

also filtered into 8 to 35 Hz using elliptic filters. Thereafter,

10×10-folds cross-validation was applied on the filtered train

data to find the optimal regularization parameter of the SCSP

filters. Finally the spatially filtered signals obtained by SCSP

were used to determine the features. In the FBCSP algorithm,

the EEG data were filtered using 9 band-pass Chebyshev

Type II. Then, the CSP was performed in each band, and a

reduced set of features from all the bands was selected us-

ing the Mutual Information-based Best Individual Feature

algorithm [10]. In the SMFBCSP algorithm, the EEG data

were filtered using 9 band-pass Chebyshev Type II, and the

subsequent steps were applied as described in Section 2.

It is noted that in this study, for each applied (S)CSP,

m = 2 pairs of filters were used, and for all the mentioned

algorithms the Naı̈ve Bayesian Parzen Window classifier [10]

was applied in the classification step.

4. RESULTS AND DISCUSSION

Fig. 1 illustrates that how increasing r affects the mutual in-

formation of the two best features for a patient coded as P007.

This figure shows that the use of small values of r improved

the mutual information by attenuating some noisy and redun-

dant EEG signals, while further increase in r value reduced

the mutual information between the features and the class la-

bels. The results show that compared to the CSP algorithm

(r=0), the regularization r improved the mutual information

of the features extracted from 8-12 Hz and 16-20 Hz up to

3% and 18% respectively. According to Fig. 1, evaluating a

small subset of r values suffices to find the optimal r. Hence,

in this study, the optimal subject-specific r was chosen from a

set of r values, r∈R= {0, 0.001, 0.003, 0.005, 0.007, 0.009}
applied on the training data.

Table 1 compares the averaged 10-folds cross-validation

accuracies of 11 stroke patients obtained by CSP, SCSP,

FBCSP, and the proposed SMFBCSP algorithms. The re-

sults show that SMFBCSP yielded superior averaged test

accuracy of 78.58±10.38%, whereas FBCSP, SCSP and CSP

yielded 76.25±10.31%, 74.49±10.10% and 65.96±13.01%
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Table 1. Classification accuracies of 10-folds cross-validation performed using CSP, SCSP, FBCSP, and the proposed SMFBCSP.
Patient’s code P003 P005 P007 P010 P012 P029 P034 P037 P044 P047 P050 Mean±Std

CSP 70.625 57.5 66.25 58.75 43.75 85 63.75 53.125 67.475 88.125 71.25 65.96±13.01

SCSP 78.125 65 77.5 66.875 58.125 90 72.5 70 71.875 91.875 77.5 74.49±10.10

FBCSP 78.75 66.875 85 62.5 64.375 87.5 78.125 70 69.375 93.75 82.5 76.25±10.31

SMFBCSP 79.375 68.75 93.125 67.5 65 89.375 81.25 72.5 70.625 93.125 83.75 78.58±10.38

Fig. 1. Effects of varying r on the mutual information of the

best features from two different frequency bands of the patient

P007. r∗ indicates the two optimal r values.

respectively. With a closer look at the results, based on the

paired t-test, SCSP and FBCSP performed significantly better

than the standard CSP algorithm (p < 0.01),whereas there

is no significant difference between SCSP and FBCSP re-

sults (p=0.17). More interestingly, the proposed SMFBCSP

results are significantly better than all the other algorithms

(p = 0.0003, 0.02 and 0.01 for the comparison with CSP,

SCSP, and FBCSP respectively).

In this study, the package fmincon available in MATLAB

based on the SQP method was used to solve the optimization

problem (4). Using MATLAB 7.5 and an Intel Quad 2.83

GHz CPU to test 6 different r values , the proposed mutual in-

formation based approach took an average of 190.88 s to find

the optimal regularization parameters of the SMFBCSP algo-

rithm. On the contrast, the use of 10-folds cross-validation

to find the regularization parameters from 6 different r values

would take around ((189)+(0.5×69))× 10 s which is more

than 583 days.

5. CONCLUSION

To extract more discriminative patterns in motor imagery-

based BCIs, this paper proposed a novel sparse multi-frequency

band common spatial pattern (SMFBCSP) algorithm that

combines a filter bank framework with the sparse CSP

to automatically select subject-specific discriminative fre-

quency bands as well as to robustify against noise and arti-

facts. The optimal regularization parameters of the proposed

SMFBCSP algorithm are directly computed using a new

mutual information-based approach, instead of using the

cross-validation approach which can not be computationally

tractable in a filter bank framework. The experimental re-

sults on 11 stroke patients demonstrated that the proposed

SMFBCSP significantly outperformed the famous existing

algorithms called CSP, SCSP, and FBCSP, by an average of

12.6%, 4.1%, and 2.3% respectively. The results also showed

that the proposed mutual information based approach found

the optimal regularization parameters more than 250000

times faster than 10-folds cross-validation method.
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