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ABSTRACT

Subtraction of compact, bright sources is essential to produce high
quality images in radio astronomy. It is recently proposed that
’clustered’ calibration can perform better in subtracting fainter
background sources. This is due to the fact that the effective power
of a source cluster is greater than the power of an individual, weak
source therefore enabling better calibration. In this paper, we present
performance analysis of clustered calibration and show that, indeed,
clustered calibration gives better results compared to un-clustered
calibration, which is already seen in the previous work. The use of
this analysis enables us to choose the optimal number of clusters for
a given observation in an efficient way.

Index Terms— Calibration, Estimation: Cramer-Rao bounds,
Interferometry: Radio interferometry

1. INTRODUCTION

Calibration of radio interferometers [1] is the procedure of estimat-
ing and correcting for the atmospheric and instrumental signal cor-
ruptions before imaging. It plays the key role in achieving the instru-
ments desired precision and sensitivity [2]. Although calibration’s
performance is highly improved by various newly devised methods
when the observed sources have a high enough Signal to Noise Ra-
tio (SNR) to be distinguished from the background noises [3, 4], it
is still a great challenge to calibrate at a very low SNR.

Radio interferometric images are produced using the data ob-
served during the total observation (integration) time. However, cal-
ibration is done at shorter time intervals of that total time. This in-
creases the noise level in data for which calibration should be exe-
cuted compared to the one in the images. In other words, there are
some weak sources appearing in the images whose signals are well
below the calibration noise level. In calibrating for the case of having
sources with a very low SNR (when SNR refers to the one obtained
for a time interval during calibration is done) clustered calibration
[5] exhibits a novel efficiency.

The clustered calibration method clusters sources in the sky
model, considers the same corruptions for the signals of the sources
at the same cluster, and solves for every cluster as a single source.
The solutions are obtained for the coherency of every source cluster,
which is the summation of its individual sources coherencies, con-
taining an upgraded information level. Therefore, when the SNR is
very low, their accuracy is highly improved compared with the solu-
tions derived by un-clustered calibrations. However, since the true
corruption of a given source might not be equal to the one obtained
for the source cluster, this procedure might introduce an additional
error which depends on the observation and the choice of source
clusters.
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In this paper, we focus on analyzing the performance of clus-
tered calibration, regardless of how the clusters are made. We relate
this performance to the effective Signal to Interference plus Noise
Ratio (SINR) obtained for each cluster. For this purpose, we use
statistical estimation theory and the Cramer-Rao Lower Bounds
(CRLB) [6]. Simulated observations illustrate the validity of the
presented clustered calibration performance analysis.

The following notations are used in this paper: Bold, lower case
letters refer to column vectors, e.g., y. Upper case bold letters refer
to matrices, e.g., C. All parameters are complex numbers, unless
stated otherwise. I is the identity matrix. The transpose, Hermitian
transpose and conjugation of a matrix are presented by (.)T , (.)H

and (.)∗, respectively. The matrix Kronecker product is denoted by
⊗. E{} is the statistical expectation operator. CN and U represent
the complex Gaussian and real uniform distributions, respectively.

2. CALIBRATION AND CLUSTERED CALIBRATION

In this section we represent the measurement equation of a polari-
metric clustered calibration. The reader is referred to [5] for details
on clustered calibration and to [7, 8] for some introduction to radio
polarimetry and calibration.

Consider calibrating an observation of K radio sources provided
by an N receiver synthesis array, with orthogonal polarized feeds.
The induced voltage at receiver p, ṽpi, due to radiation of source
i polarized waves, ei, is given by ṽpi = J̃piei where J̃pi is the
2× 2 Jones matrix [7], representing some sky and instrumental cor-
ruptions in the signal.
The total signal obtained at receiver p, vp, is a linear superposition
of K such signals plus the receiver noise. After correcting for geo-
metric delays and the instrumental effects, the p-th receiver voltage
is correlated to the other N − 1 receivers voltages. The correlated
voltages E{vp ⊗ vH

q }, referred as visibility [7] of baseline p − q is
given by

Vpq =

K∑
i=1

Jpi(θθθ)Ci{pq}J
H
qi(θθθ) +Npq , (1)

where Npq is the baseline’s additive noise and Ci{pq} is the Fourier
transform of the coherency matrix [9, 7] of the i-th source radia-
tion. Note that in Eq. (1), the Jones matrix J(θθθ) corresponds to the
corruptions in signals which are identified by some parameters col-
lected in vector θθθ. Calibration is essentially obtaining the maximum
likelihood estimation of the unknown parameter vector θθθ.

Our current clustered calibration makes the underlying assump-
tion that if the angular separation between two sources i and j

is small enough, the sky corruptions in their signals are identi-
cal, Jpi = Jpj . Thus, it initially designs source clusters, Li for
i ∈ {1, . . . , Q} where Q � K, on which the sky variation is
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considered to be uniform, and applies calibration on

Vpq =

Q∑
i=1

J̃pi(θ̃θθ){
∑
l∈Li

Cl{pq}}J̃H
qi(θ̃θθ) + Ñpq. (2)

In Eq. (2), J̃pi is the clustered calibration Jones which is shared by
sources of cluster i at receiver p, and Ñ is its effective noise which
is explicitly discussed at section 3.

3. PERFORMANCE EVALUATION

In this section, we explain the reason of clustered calibration’s su-
perior performance, compared to un-clustered calibration, at a low
SNR. For simplicity, we first consider the case of observing two
point sources in the sky using an interferometric array.

3.1. Estimations of Cramer-Rao Lower Bounds

We are concerned with calculating CRLB to limit the performances
of clustered and un-clustered calibrations.

Consider observing two point sources at baseline p − q. Based
on Eq. (1), the visibilities are given by

Vpq = Jp1C1{pq}J
H
q1 + Jp2C2{pq}J

H
q2 +Npq, (3)

in the un-clustered calibration strategy. Vectorizing Vpq , the visibil-
ity vector of the baseline p− q is derived as

y = J
∗
q1 ⊗ Jp1vec(C1{pq}) + J

∗
q2 ⊗ Jp2vec(C2{pq}) + npq ,

where the noise vector npq ≡ vec(Npq) is considered to have a
CN (0, σ2I) distribution. Therefore, we have

y ∼ CN (s, σ2
I), s ≡

∑
i=1,2

J
∗
qi ⊗ Jpivec(Ci{pq}). (4)

Using Eq. (4), the log-likelihood function of the visibility vector y
is given by

L(θθθ|y) = −4ln{ π

σ2
} − σ

−2(y − s(θθθ))H(y − s(θθθ)). (5)

Consequently, the Fisher information matrix is obtained as

I(θθθ) = −Ey

[
∂2L(θθθ|y)
∂θθθ∂θθθT

]
= 2σ−2

Re(JH
s Js), (6)

where Js is the Jacobian matrix of s with respect to θθθ

Js(θθθ) =
2∑

i=1

∂

∂θθθ
{J∗

qi ⊗ Jpi}[I⊗ vec(Ci{pq})]. (7)

Thus, variations of any unbiased estimator of parameter vector θθθ,
lets say θ̂θθ, is bounded from below by the CRLB as

Var(θ̂θθ) ≥ [2σ−2
Re(JH

s Js)]
−1

. (8)

Lets try to bound the error variations of the clustered calibration
parameters assuming that the two sources construct a single cluster,
called cluster number 1. We reform Eq. (3) as

Vpq = J̃p1(C1{pq}+C2{pq})J̃
H
q1+Γ1{pq}+Γ2{pq}+Npq, (9)

where Γi{pq}, referred to as “clustering error” matrices, are given by

Γi{pq} = JpiCi{pq}J
H
qi − J̃p1Ci{pq}J̃

H
q1, (10)

and J̃p1(θ̃θθ) is the clustered calibration solution at receiver p.
Eq. (9) implies that what is considered as the noise matrix Ñpq in
clustered calibration data model, Eq. (2), is in fact

Ñpq ≡ Γ1{pq} + Γ2{pq} +Npq . (11)

Vectorizing Eq. (9), clustered calibration visibility vector is obtained
by

y = J̃
∗
q ⊗ J̃pvec(C1{pq} +C2{pq}) + ñpq , (12)

where ñpq = vec(Ñpq).
We point out that depending on the observation as well as the

positions of the two sources on the sky, the clustering error Γi{pq}

will have different properties. However, in order to study the perfor-
mance of clustering in a statistical sense, and to simplify our analy-
sis, we make the following assumptions.

1. Consider statistical expectation over different observations
and over different sky realizations where the sources are
randomly distributed on the sky. In that case, almost surely
E{J̃} → E{J} and consequently

E{Γi{pq}} → 0 (13)

In other words, we assume the clustering error to have zero
mean over many observations of different parts of the sky.

2. We assume the error in clustering sources is less if the sources
are closer together in the sky rather than far apart. Therefore,
given a set of sources, the clustering error will reduce as the
number of clusters increase. In fact, this error becomes 0

when we have clusters equal to the number of source (each
cluster contains only one source). Therefore, given a set of
sources, the variance of Γi{pq} will decrease as the number
of clusters increase.

Using Eq. (13) and bearing in mind that E{Npq} = 0, we can
consider ñpq ∼ CN (0, σ̃2I) where E{ñpqñ

H
pq} = σ̃2I. Therefore,

y ∼ CN (s̃, σ̃2
I), s̃ ≡ J̃

∗
q ⊗ J̃pvec(C1{pq} +C2{pq}).

and similar to Eq. (8), we have

Var(
̂̃
θθθ) ≥ [2σ̃−2

Re(JH
s̃ Js̃)]

−1
. (14)

3.1.1. Simulation 1: Two sources and one cluster

We simulate an observation of two point sources with intensities
δ1 = 11.25 and δ2 = 2.01 Jansky (Jy) at sky coordinates [l,m]
equal to [−0.014,−0.005] and [−0.011,−0.010], respectively.
Baselines coordinates of Westerbork Radio Synthesis Telescope
(WSRT) with 14 receivers are used in this simulation.
Fourier transform of the i-th source coherency matrix at baseline
coordinates [u, v, w] is calculated as [1]

Ci = δie
{j(uli+vmi+wi[

√
1−l2−m2−1])}

[
.5 0
0 .5

]
(15)

where j2 = −1. We Consider the J Jones matrices of Eq. (3) to be
diagonal. Their amplitude and phase elements follow U(0.75, 0.95)
and U(0.003, 0.004) distributions, respectively. The background
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Fig. 1. Clustered and un-clustered calibrations CRLB. When the
effective noise power of the clustered calibration, ||Ñ||2, is small
enough, then its CRLB is lower than of the un-clustered calibration’s
and it reveals a superior performance.

noise is N ∼ CN (0, 10I). Jones matrices of the clustered calibra-
tion, J̃p1 for p = 1, 2, are obtained as Jp1+U(0.02, 0.40)ejU(0.5,2) .
For twenty realizations of J̃matrices, we calculated CRLB of the un-
clustered and clustered calibrations using Eq. (8) and Eq. (14), re-
spectively. The results are presented by Fig. 1. As we can see in Fig.
1, for small enough errors matrices ΓΓΓ of Eq. (10), the clustered cal-
ibration’s CRLB stands below the un-clustered calibration’s. There-
fore, the clustered calibration’s performance is superior compared to
the un-clustered ones. Increasing the power of error matrices, or the
power of effective noise Ñ, the result becomes the opposite.

3.2. Analysis of CRLB

We claim that if source 1 is considerably brighter than source 2,
||C1{pq}|| 
 ||C2{pq}||, and if the weak source power is much
lower than the noise level, ||C2{pq}|| � ||N{pq}||, then clustered
calibration’s performance is superior than the un-clustered calibra-
tion. Note that the worst performance of both the calibrations is
for the weakest source and we are more concerned to compare the
CRLBs for this source.

The CRLBs obtained for un-clustered and clustered calibrations
in Eq. (8) and Eq. (14), respectively, are both almost equal to
SINR−1. In the un-clustered calibration, the effective signal for the
weakest source is C2{pq} where the noise is N{pq}. Therefore,

SINR2 =
||C2{pq}||2
||N{pq}||2 . (16)

But, in clustered calibration, the effective signal and noise are
C̃{pq} ≡ C1{pq} +C2{pq} and Ñ{pq}, respectively. Thus,

SINRc =
||C̃{pq}||2
||Ñ{pq}||2

. (17)

Clustered calibration has a superior performance when

SINRc 
 SINR2. (18)

Consider the two possible extremes in a clustered calibration
procedure:

First, the case of clustering many sources of a large field of view
to a very small number of clusters. In this case, the angular diameter
of a cluster could be so large that the characteristics of the sky are

considerably changed for different source directions of the cluster.
Subsequently, dedicating a single solution to all the sources of every
cluster by clustered calibration introduces clustering error matrices
ΓΓΓ with large variance of Eq. (10). Having high interference power,
the clustered calibration effective noise Ñ of Eq. (11) becomes very
large. Therefore, clustered calibration SINR will be very low and it
does not produce high quality results.

Second, the case of clustering sources of a small field of view to
a very large number of clusters. In this case, the variance of ΓΓΓ ma-
trices are almost zero while the signal powers of sources clusters are
almost as low as of the individual sources. Therefore, the clustered
calibration SINR is almost equal to the un-clustered calibration one
and the calibration performances are expected to be almost the same
as well.
Thus, clustered calibration best efficiency is obtained at the smallest
number of clusters for which Eq. (13) and Eq. (18) satisfy simulta-
neously. The SINR of Eq. (18) could be used as an efficient criterion
for detecting the optimum number of clusters.

3.3. Generalizations to many sources and many clusters

Vectorizing the visibilities of Eq. (1) and staking them in vector y,
the general data model of un-clustered calibration is

y =
K∑
i=1

si(θθθ) + n, (19)

where n ∼ CN (0,ΠΠΠ) and

si ≡
⎡
⎣ J∗

2i ⊗ J1ivec(C{12}i)
...

J∗
Ni ⊗ J(N−1)ivec(C{(N−1)N}i)

⎤
⎦ . (20)

Therefore, the un-clustered calibration CRLB is resulted as

var(θθθ) ≥
[
2 Re

{
(

K∑
i=1

Jsi
(θθθ))HΠΠΠ−1(

K∑
i=1

Jsi
(θθθ))

}]−1

,

where Jsi
is the Jacobian matrix of si with respect to θθθ.

Computing the exact CRLB is more complicated when we have
clustered calibration. Based on Eq. (2), clustered calibration mea-
surement equation is

y =

Q∑
i=1

s̃i(θ̃θθ) + ñ. (21)

In Eq. (21), s̃i is defined similar to Eq. (20) where J and C are
replaced by J̃ and C̃, ñ ≡ ∑K

i=1ΓΓΓi + n,

ΓΓΓi = [vec(ΓΓΓi{12})
T
. . . vec(ΓΓΓi{(N−1)N})

T ]T , (22)

and ΓΓΓi{pq} is given by Eq. (10).
Calculation of the conventional CRLB for the clustered calibra-

tion’s data model of Eq. (21) is impractical due to the existence of
the nuisance parameters ΓΓΓi. This leads us to the use of Cramer-Rao
like bounds devised in the presence of the nuisance parameters [10].
We apply the Modified CRLB (MCRLB) [11] to the clustered cali-
bration’s case.

The MCRLB for estimation errors of ̂̃θθθ in the presence of the
nuisance parameters ΓΓΓ error matrices is defined as [11]

var(̂̃θθθ) ≥ [
Ey,ΓΓΓ

{
−Ey|ΓΓΓ

{
∂

∂θ̃θθ

∂

∂θ̃θθ
T

ln{P (y|ΓΓΓ; θ̃θθ)}
}}]−1

, (23)
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where P (y|ΓΓΓ; θ̃θθ) is the PDF of the visibility vector y assuming that
the ΓΓΓ matrices of Eq. (22) are priori known. Since n ∼ CN (0,ΠΠΠ),
from Eq. (21) we have

y|ΓΓΓ ∼ CN ([

Q∑
i=1

s̃i +

K∑
i=1

ΓΓΓi],ΠΠΠ), (24)

and therefore in Eq. (23), −Ey|ΓΓΓ

[
∂

∂θ̃θθ

∂

∂θ̃θθ
T ln{P (y|ΓΓΓ; θ̃θθ)}

]
, which

is called the modified Fisher information, is equal to

2Re{[
Q∑

i=1

Js̃i
(θ̃θθ) +

K∑
i=1

JΓΓΓi
(θ̃θθ)]HΠΠΠ−1[

Q∑
i=1

Js̃i
(θ̃θθ) +

K∑
i=1

JΓΓΓi
(θ̃θθ)]}.

Ey,ΓΓΓ in Eq. (23) could be estimated by Monte-Carlo method.
As a rule of thumb, skipping heavy computational cost of

MCRLB, one can interpret the SINR test of Eq. (18) as follows: If
in average the effective SINR of clustered calibration, SINRc, gets
higher than the effective SINR of un-clustered calibration obtained
for the weakest observed signal, SINRw,

E{SINRc} 
 E{SINRw}, (25)

then clustered calibration can achieve a better quality results. In Eq.
(25), the expectation is taken with respect to the thermal noise N,
error matrices ΓΓΓ, and all the baselines.

3.3.1. Simulation 2: SINR

We simulate WSRT including 14 receivers which observes 50
sources with intensities below 15 Jy. The source positions and
their brightness are following uniform and Rayleigh distributions,
respectively. The background noise is N ∼ CN (0, 15I). We cluster
sources, using weighted Hierarchical clustering [5], into Q number
of clusters where Q ∈ {3, . . . , 50}. Since for smaller number of
clusters, we expect larger interference (errors) in clustered calibra-
tion’s solutions, for every Q, we consider

∑50
i=1 Γi ∼ CN (0, 150

Q
I).

The choice of the complex Gaussian distribution for the errors ma-
tricesΓΓΓ is due to the central limit theorem and the assumptions made
in section 3.1.

We proceed to calculate E{SINRc} by Monte-Carlo method.
Signal power at each cluster is obtained using the cluster’s brightest
and weakest sources. As the result in Fig. 2 shows, E{SINRc} is low
for very smallQ, when the effect of interference is large. By increas-
ing the number of clusters it increases and gets its highest peak for
which the best performance of the clustered calibration is expected.
After that, it decreases by the dominant effect of the background
noise, and approachs to the un-clustered calibration E{SINRw}.

4. CONCLUSIONS

Below the calibration background noise level, clustered calibration
achieves a higher quality of solutions, compared to the un-clustered
calibration. This is due to the fact that it promotes the level of SINR
in the calibration procedure. We proved this superiority for a gen-
eral sky model utilizing MCRLB and SINR analysis. Using SINR
criterion, we could find the optimum number of clusters, for which
the clustered calibration accomplishes its best performance. A fu-
ture challenge shall be utilizing estimations of SINR or MCRLB in
detection of the optimum number of clusters for real observations
and for specific sky models.
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Fig. 2. Clustered calibration’s SINR. SINR is low for small Q, when
the interference is large. By increasing the number of clusters it
increases and gets its highest level for which the best performance of
the calibration is expected. After that, it decreases by the dominant
effect of the background noise.
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