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ABSTRACT

In this paper, we introduce a new millimeter wave imaging modal-
ity with extended depth-of-field that provides diffraction limited im-
ages based on a significant reduction in scan-time. The technique
uses a cubic phase element in the pupil of the system and a non-
linear recovery algorithm to produce images that are insensitive to
object distance. We present experimental results that validate sys-
tem performance and demonstrate a greater than four-fold increase
in depth-of-field with a reduction in scan-time by a factor of at least
two.

Index Terms— Computational imaging, millimeter wave imag-
ing, extended depth-of-field, image reconstruction, sparsity.

1. INTRODUCTION

Over the past several years, imaging using millimeter wave (mmW)
and terahertz technology has gained a lot of interest [1], [2], [3]. This
interest is, in part, driven by the ability to penetrate poor weather and
other obscurants such as clothes and polymers. Millimeter waves are
high-frequency electromagnetic waves usually defined to be in the
30 to 300 GHz range with corresponding wavelengths between 10
to 1mm. Radiation at these these frequencies is non-ionizing and is
safe to use on people. Applications of this technology include the
detection of concealed weapons, explosives and contraband. Fig. 1
compares a visible image and corresponding 94-GHz image of two
people with various weapons concealed under clothing. Note that
concealed weapons are clearly detected in the mmW image.

Recently, in [3], Mait et al. presented a computational imaging
method to extend the depth-of-field of a passive mmW imaging sys-
tem. The method uses a cubic phase element in the pupil plane of
the system to render system operation relatively insensitive to object
distance. The aberrations introduced by the cubic phase elements are
then removed by post-detection signal processing. It was shown that,
one can increase the depth-of-field of a 94GHz imager four times its
normal depth-of-field [3].

Several other systems have also been developed and discussed
in the literature [1], [2]. Some of them use a single-beam system
that forms an image by scanning in azimuth and elevation. One of
the main drawbacks of mechanical scanning is that it significantly
limits the acquisition speed. For instance, it takes about 15 seconds
for a 94-GHz imager to scan a 30◦-by-30◦ angular sector. Real-
time mmW imaging has also been demonstrated using an array of
sensors. However, these systems introduce higher complexity and
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are costly. To deal with this, compressive sampling methods [4], [5]
have been applied to mmW imaging which reduces the number of
samples required to form an image [6], [7], [8], [9], [10], [11].

(a) (b)

Fig. 1. Millimeter wave imaging through clothing. (a) Visible image
of the scene. (b) Image produced using a 94-GHz imaging system.

In this paper, we describe a passive mmW imaging system with
extended depth-of-field that can produce images with reduced num-
ber of samples. We show that if the mmW image is assumed to be
sparse in some transform domain, then one can reconstruct a good
estimate of the image using this new image formation algorithm. Our
method relies on using a far fewer number of measurements than the
conventional systems do and can reduce the scan-time significantly.

The organization of the paper is as follows. Section 2 provides
background information on passive mmW imaging using a 94GHz
system. The proposed undersampling scheme is described in Sec-
tion 3. We demonstrate experimental results in Section 4 and Sec-
tion 5 concludes the paper with a brief summary and discussion.

2. BACKGROUND

A schematic diagram of our mmW imaging system is shown in
Fig. 2. It is a 94-GHz Stokes-vector radiometer used for mmW
measurements. It is a single-beam system that produces images by
scanning in horizontal and vertical axis. The radiometer has a ther-
mal sensitivity of 0.3 K with a 30-ms integration time and 1-GHz
bandwidth per pixel. A Cassegrain antenna is mounted to the front
of the radiometer receiver that has 24” diameter primary parabolic
reflector and a 1.75” diameter secondary hyperbolic reflector. The
position of the hyperbolic secondary is variable.

One can model the 94-GHz imaging system as a linear, spatially
incoherent, quasi-monochromatic system [3]. The intensity of the
detected image can be represented as a convolution between the in-
tensity of the image predicted by the geometrical optics with the
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(a) (b)

Fig. 2. 94-GHz imaging system. (a) Image of the scanning system.
(b) Schematic diagram with measured dimensions.

system point spread function [12]

ii(x, y) � |i(x, y)|2 = og(x, y) ∗ ∗h(x, y), (1)

where ∗∗ represents the two-dimensional convolution operation.
The function og(x, y) represents the inverted, magnified image of
the object that a ray-optics analysis of the system predicts.

The second term in (1), h(x, y), is the incoherent point spread
function (PSF) that accounts for wave propagation through the aper-
ture
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where p(x/λf, y/λf) is the coherent point spread function. The
function p(x, y) is the inverse Fourier transform of the system pupil
function P (u, v)

p(x, y) = FT−1[P (u, v)].

Without loss of generality, assume the recorded arrays are of size
N × N . Then, eq. (1) can be described as

i = Hog , (3)

where i and og are N2×1 lexicographically ordered column vectors
representing the N × N arrays ii(x, y) and og(x, y), respectively,
and H is the N2×N2 matrix that models the incoherent point spread
function h(x, y). Displacement, dε, of an object from the nominal
object plane introduces a phase error, θε(u, v), in the pupil function.
The phase error increases the width of a point response.

The system’s depth-of-field (DoF ) is defined as the distance in
object space over which an object can be placed and still produce
an in-focus image. For a 94 GHz imager with an aperture diameter
D = 24” and object distance do = 180”, DoF ≈ 17.4” which
ranges from 175.2” to 192.6” [3].

The cubic phase element Pc(u, v) is

Pc(u, v) = exp(jθc(u, v))rect
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where
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and rect is the rectangular function. The phase function is separa-
ble in the u and v spatial frequencies and has spatial extent Wu and

Wv along the respective axis. The constant γ represents the strength
of the cubic phase. Fig. 3 shows the measured PSFs for conventional
imaging and imaging with a cubic phase. Note that the response of
the cubic phase system is relatively unchanged, whereas the response
of the conventional system changes considerably.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Measured point spread functions for conventional imaging
and imaging with a cubic phase. PSFs for conventional system at (a)
113”, (b) 146.5”, and (c) 180”. (d)-(f) PSFs for a system with cubic
phase at the same distances for (a)-(c).

A post-detection signal processing step is usually employed to
remove the artifacts of the aberrations introduced by the cubic phase
element to produce a well-defined sharp response [13], [14], [15].
Assuming a linear process

ip(x, y) = ii(x, y) ∗ ∗w(x, y) (5)

one can implement w(x, y) as a Wiener filter in the Fourier space

W (u, v)
H∗

c (u, v)

|Hc(u, v)|2 + K−2Φ̂N (u,v)
ˆΦL(u,v)

, (6)

where Hc(u, v) is the optical transfer function associated with the
cubic phase element, the parameter K is a measure of the signal-to-
noise ratio, the functions Φ̂L and Φ̂N are the expected power spec-
tra of the object and noise, respectively. The optical transfer func-
tion is usually estimated from the experimentally measured point
responses. One can view the estimated ip as a diffraction limited
response. In the matrix notation, one can rewrite eq.(5) as

ip = Wi = WHog , (7)

where ip is the N2×1 column vector corresponding to array ip(x, y)
and W is the N2 × N2 convolution matrix corresponding to the
Wiener filter w(x, y).

3. ACCELERATED IMAGING WITH EXTENDED
DEPTH-OF-FIELD

Since our objective is to form mmW images with reduced number of
samples, we propose the following sampling strategy. Our sensor is
a single-beam system that produces images by scanning in azimuth
and elevation. One can reduce the number of samples by randomly
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undersampling in both azimuth and elevation. Mathematically, this
amounts to introducing a mask in eq. (1) as follows

iM = Mi = MHog, (8)

where iM is an N2 × 1 lexicographically ordered column vector of
observations with missing information. Here, M is the degradation
operator that removes the p samples from the signal. This matrix is
of size N2 × N2, built by taking the N2 × N2 identity matrix with
p zeros in the diagonal correspond to the discarded samples.

To remove the artifacts of the aberrations introduced by the cu-
bic phase element a Wiener filter can be implemented as shown in
eq. (5). Then, the observation model can be written as

io = WiM = WMi = WMHog . (9)

Using the relation in eq. (7), one can write Hog in terms of the
diffraction limited response, ip, as

Hog = Gip, (10)

where, G is the regularized inverse filter corresponding to W. With
this, and assuming the presence of additive noise η, one can rewrite
the observation model (9) as

io = WMGip + η, (11)

where η denotes the N2 × 1 column vector corresponding to noise,
η. We assume that ‖η‖2 = ε2.

Having observed io and knowing the matrices W, M and G, the
general problem is to estimate the diffraction limited response, ip.
Assume that ip is sparse or compressible in a basis or frame Ψ so that
ip = Ψα with ‖α‖0 = K � N2, where the �0 sparsity measure
‖.‖0 counts the number of nonzero elements in the representation.
The observation model (11) can now be rewritten as

io = WMGΨα + η. (12)

This is a classic inverse problem whose solution can be obtained by
solving the following optimization problem

α̂ = arg min
α

‖ α ‖1 subject to ‖io −WMGΨα‖2 ≤ ε. (13)

Once the representation vector α is estimated, we obtain the final
estimate of ip as îp = Ψα̂. Note that the recovery of α from eq. (12)
will depend on certain conditions on the sensing matrix WMGΨ

and the sparsity of α [16].

4. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance and applicability
of our method on simulated data with the measured PSFs. In these
experiments, we use an orthogonal wavelet transform (Daubechies
4 wavelet) as a sparsifying transform. There has been a number of
approaches suggested for solving optimization problems such as eq.
(13). In our approach, we employ a highly efficient algorithm that is
suitable for large scale applications known as the Gradient Projection
for Sparse Reconstruction (GPSR) algorithm [17].

The extended object used in our experiments is represented in
Fig. 4(a). Images of an extended object for conventional imaging
system at 113”, 146” and 180” are shown in Fig. 5(a)-(c), respec-
tively. Note that the conventional imaging system produces images
with significant blurring. In contrast, even without signal process-
ing, the images produced with cubic phase element retain more dis-
cernable characteristics of the object than the images from the con-
ventional system, as shown in Fig. 5(d)-(f). It can be seen from

Fig. 5(g)-(i) that post processing removes the artifacts of aberrations
introduced by the cubic phase element and produces sharp images.
Hence, one can extend the region over which the system generates
diffraction limited images. In fact, in [3], it was shown that the
DoF of a conventional 94GHz imaging system can be extended
from 17.4” to more than 68”.

(a) (b)

Fig. 4. (a): Representation of the extended object used to compare
conventional and cubic-phase imaging. (b): Schematic of object il-
lumination.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Images from a conventional imaging system at (a) 113”, (b)
146” and (c) 180”. (d)-(f) Images from a system with cubic phase
at the same object distances as for (a)-(c). (g)-(f) Processed images
from a system with cubic phase at the same object distances as for
(a)-(c).

Fig. 7(a)-(c) show the sparsely sampled cubic phase data. Only
50% of the data is sensed. The samples were discarded according
to a random undersampling pattern shown in Fig. 6(a). This corre-
sponds to a reduction in scan-time by a factor of 2. The reconstructed
images obtained by solving problem (13) are shown in Fig. 7(d)-(f).
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The reconstructions of the extended object are comparable to the
processed images from a system with cubic phase. This can be seen
by comparing Fig. 5(g)-(i) with Fig. 7(d)-(f).

In Fig. 6(b), shows the peak-signal-to-noise-ratio (PSNR) curves
as we vary the number of measurements. We see that with increase
in number of measurements the reconstruction quality generally im-
proves. It is interesting to note that the PSNR values stay about the
same after 50% of the measurements are taken. Furthermore, recon-
struction curves corresponding to all three distances 113”, 146” and
180” follow the similar curves, showing the depth invariance of the
system. These figure shows that it is indeed possible to extended
depth-of-field even when cubic phase data is sparsely sampled.
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Fig. 6. (a) A random undersampling pattern. (b) Relative error vs.
number of measurement curves.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Sparsely sampled data from a modified imaging system at
(a) 113”, (b) 146”, and (c) 180”. (d)-(f) Diffraction limited images
recovered by solving (13) at the same object distances as for (a)-(c).

5. DISCUSSION AND CONCLUSION

We have utilized a computational imaging technique along with a
nonlinear reconstruction method and demonstrated that extended
depth-of-field is possible for passive millimeter wave imaging even
when the cubic phase data is sparsely sampled.

Millimeter wave systems image temperature contrasts. Hence,
careful analysis of noise and contrast in such systems in necessary
to assess the impact of inserting a cubic phase element in the pupil
plane of the system and sparsely sampling the data. More analysis on

the artifacts introduced by the cubic phase element and random un-
dersampling in terms of the point spread function will be discussed
elsewhere (see [18] for more details).
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