
FAST SEISMIC IMAGING FOR MARINE DATA

Aleksandr Aravkin, Xiang Li, and Felix J. Herrmann

Seismic Laboratory for Imaging and Modeling, the University of British Columbia

ABSTRACT

Seismic imaging can be formulated as a linear inverse prob-

lem where a medium perturbation is obtained via minimiza-

tion of a least-squares misfit functional. The demand for

higher resolution images in more geophysically complex

areas drives the need to develop techniques that handle

problems of tremendous size with limited computational

resources. While seismic imaging is amenable to dimension-

ality reduction techniques that collapse the data volume into

a smaller set of “super-shots”, these techniques break down

for complex acquisition geometries such as marine acquisi-

tion, where sources and receivers move during acquisition.

To meet these challenges, we propose a novel method that

combines sparsity-promoting (SP) solvers with random sub-

set selection of sequential shots, yielding a SP algorithm that

only ever sees a small portion of the full data, enabling its

application to very large-scale problems. Application of this

technique yields excellent results for a complicated synthetic,

which underscores the robustness of sparsity promotion and

its suitability for seismic imaging.

Index Terms— Seismic imaging, dimensionality reduc-

tion, compressive sensing, stochastic optimization

1. INTRODUCTION

Modern-day seismic wave-equation based imaging depends

increasingly on computationally and data-intensive wave

simulators that require solutions of partial-differential equa-

tions (PDEs) over increasingly large domains and frequency

ranges. The computational costs involved with the solu-

tions of these PDEs become prohibitively large because the

linearized inversions are based on a least-squares fitting pro-

cedure carried out for a very large number of sources. This

is challenging because each source corresponds to a different

right-hand side of the PDE and hence the computational cost

grows exponentially with the size of the domain (the sources

move along the surface) and resolution.

Motivated by early work of [1, 2], we lower the computational
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burden by decreasing the number of source experiments, ex-

ploiting the linearity of the PDEs with respect to the sources.

This special structure allows us to use randomized superposi-

tion, where we combine sources and their corresponding data

into a smaller number of simultaneous source experiments.

During these experiments, sequential sources are replaced by

incoherent “beams”, where each source position fires with

a strength drawn from a Gaussian random distribution. As

long as the number of these incoherent source experiments

is smaller than the number of sequential experiments, this

random superposition leads to a reduction of computation by

virtue of the reduced data volume and number of sources.

However, this dimensionality reduction hinges on two con-

ditions: cancellation of source cross talk as the number of

simultaneous sources increases, and full acquisition, where

each source experiment sees the same receivers. The first

condition is met as long as the batch size, i.e the number

of simultaneous sources, is sufficiently large. However, in-

creasing this batch size only leads to a slow decay of the

cross talk because this method corresponds to the stochastic-

average approximation, which is essentially a Monte-Carlo

sampling technique. Unfortunately, the alternative stochastic

approximation, where randomized batches are drawn for each

gradient update, does not remedy this situation because it is

unstable with respect to noise.

To overcome these issues of slow convergence and noise in-

stability, [3] introduced a dimensionality reduction approach

where the source crosstalk is removed by transform do-

main sparsity promotion, exploiting ideas from compressed

sensing [4]. In the seismic context, the originally “overde-

termined” problem—note that the imaging has a null space

because related finite aperture and other effects—is turned

into a much smaller underdetermined system of equations. To

improve the convergence of the sparsity promoting solver [5],

[3] use a stochastic-approximation type of approach (see e.g.

[6]) that removes correlations between the solution vector

and source encoding by randomized superposition.

The approach of [3] relies on full acquisition (the second con-

dition), which is generally not met during marine acquisition

because receivers are towed behind the sources and therefore

move. Here, we address this issue by replacing the random-

ized superposition by selecting random subsets of sequential

sources instead of randomized simultaneous sources. We also

provide a framework justifying both approaches.
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2. THE SEISMIC IMAGING PROBLEM

After discretization, seismic imaging requires inversion of the

linearized time-harmonic Born-scattering matrix linking data

b to the medium perturbation x. Note that b ∈ C
NfNrNs

with Nf , Nr, and Ns the number of angular frequencies, re-

ceivers, and sources, while x ∈ R
M , with M the number of

grid points.

Because angular frequencies and sequential sources can be

treated independently, the linearized inversion has the follow-

ing separable form:

minimize
x

‖b−Ax‖22 =

K∑
i=1

‖bi −Aix‖22, (1)

with K = NfNs the batch size, given by the total number of

monochromatic sources. The vectors bi ∈ C
Nr represent the

corresponding vectorized monochromatic preprocessed (free

of surface-multiples and direct waves) shot records, and b is a

stack of vectors bi. The matrix Ai represents the monochro-

matic linearized scattering matrix for the ith source, and the

matrix A is a stack of matrices Ai.

Solving this problem is problematic because each iteration

requires 4K PDE solves: two to compute the action of Ai

and two for the action of its adjoint AH
i . Both actions involve

solutions of the forward source and reverse-time residual

wavefields [7]. Thus, the inversion costs grow linearly with

the number of monochromatic sources.

To solve Equation (1) efficiently, we combine recent ideas

from stochastic optimization and compressive sensing. We

cast the original imaging problem into a series of much

smaller subproblems that work on different subsets of data.

2.1. Solution by batching
We based our original algorithm on forming compressive

seismic experiments—also known as mini batches in the lan-

guage of machine learning —that consist of collections of

small numbers of supershots. These supershots are made of

randomized superpositions of sequential sources.

Mathematically, imaging experiments for mini batches with

K ′ � K monochromatic supershots, require the solution of

the reduced system

minimize
x

∥∥b−Ax‖22
}
=

K′∑
j=1

‖bj −Ajx‖22, (2)

which has the same structure as (1), but with much smaller

dimension K ′ << K. Each bj is a weighted linear combina-

tion of bi, and each matrix Aj is the same linear combination

of matrices Ai: bj =
∑k

i=1 wijbi, Aj =
∑k

i=1 wijAi.
Sub-selection and mixing can be specified by choice of wij . If

the vectors wi with entries wij are Gaussian, this corresponds

to phase encoding, and turns sequential sources into simulta-

neous sources. If instead wi are taken to be random columns

of the identity matrix, this corresponds to selecting random

subsets of source locations, and allows us to work with ma-

rine data. Note that the former approach fails for marine data,

because of the source receiver motion described in the intro-

duction. The latter approach can be applied to marine data,

or indeed any other complicated geometry, because the basic

sampling ‘unit’ is (a frequency slice) of an entire shot.

For each choice of weights, is easy to show that the number

of PDE solves required for each iteration of the solution of (2)

is reduced by a factor of K ′/K, where K ′ is the batch size

in (2). If N ′
f < Nf random frequencies and N ′

s < Ns shots

are used, then K ′/K =
(
N ′

f/Nf

)(
N ′

s/Ns

)
.

2.2. Solution by sparsity promotion
Because averaging—whether via the stochastic-average ap-

proximation or via averaging amongst model iterates as part

of stochastic-gradient descents—is not able to remove the

source crosstalk efficiently, we rely on transform-domain

sparsity promotion instead. In the seismic case without noise,

sparsity-promoting imaging involves the solution of the fol-

lowing optimization problem:

minimize
y

‖y‖1 subject to b = ACTy︸︷︷︸
x

, (3)

where C represents the Curvelet transform [8], and the final

recovery is obtained via x = CTy. Efficient �1 solvers for

this problem are typically based on solutions of a series of

relaxed subproblems, where components are allowed to enter

into the solutions controllably. It is widely known that these

approaches lead to a reduction in the number of iterations to

reach the solution. The spectral projected-gradient algorithm

[5, SPG�1] uses this principle by solving a series of LASSO

problems,

minimize
y∈τB1

‖b−ACTy‖22 , (4)

where τB1 = {y∣∣‖y‖1 ≤ τ}. The sequence of τ ’s are gen-

erated automatically by [5, SPG�1] so that the final solution

of (4) with the final τ also solves (3).

Each LASSO subproblem is solved using the Spectral Pro-

jected Gradient (SPG) method, so the overall algorithm uses a

limited number of matrix-vector multiplies. Because the cost

of the solver is determined by this number of multiplies, this

approach is particularly suitable for large-scale geophysical

problems [9].

Unfortunately, the degree of randomized dimensionality re-

duction determines the amount of cross-talk that results from

the inversion, and hence we can not reduce the problem

size too much. We overcome this by subsampling each

LASSO problem (4), in effect solving a series of problems:

minimizey∈τB1
‖b − ACTy‖22, where the subsampling can

take the form of either simultaneous “super-shots” or of ran-

dom subsets of source locations. As in the SPG�1 algorithm,

each new (subsampled) LASSO problem is warm-started with
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the solution ȳ to the previous LASSO problem on the way to

solving (3) . The algorithm can be seen as ‘curve’-hopping

within a random family of Pareto curves corresponding to the

subsampled realizations of b and A.

This approach dramatically decreases time per iteration, be-

cause computational effort for every iteration of the SPG

algorithm is reduced by a factor of K ′/K. While conver-

gence to the true solution of (3) is still an open question, the

approach works well in practice and allows sparsity promo-

tion techniques to be used on a previously inaccessible scale.

A natural question from a practical standpoint is whether it is

better to do random source encoding (random Gaussian mix-

ing), or to select random subsets of shots and frequencies at

each LASSO subproblem. This is investigated in the context

of a large-scale seismic example in the next section.

3. CASE STUDY: THE BG COMPASS MODEL

To test our imaging algorithm for the two dimensionality-

reduction scenarios in a realistic setting, we consider a syn-

thetic velocity model with a large degree of complexity. To

build the background-velocity model (Figure 1b) for our

imaging algorithm, we use the algorithm in [10] with 10

overlapping frequency bands on the interval 2.9 − 22.5Hz
starting with initial model shown in Figure 1a.

We parametrize the velocity perturbation on a 409×1401 grid

with a grid size of 5m. We use a Helmholtz solver to generate

data from 350 source positions sampled at an interval of 20m
and 701 receivers sampled with an interval of 10m. We use

10 random frequencies selected from 20 − 50Hz and scaled

by the spectrum of a 30Hz Ricker wavelet. We solve 10

LASSO subproblems with and without independent redraws

of RM. The results are summarized in Figure 2 (b–c) and

clearly show significant improvements from the redraws. Not

only is the crosstalk removed more efficiently but the reflec-

tors are also better imaged in particular at the deeper parts

of the model where recovery without redraws is not able to

image the events. It is also interesting to see that replacing the

Gaussian measurement matrix by the identity matrix—i.e.,

replacing simultaneous shots by randomly selected sequential

shots—does not seriously affect the imaging result.

4. DISCUSSION AND CONCLUSIONS

We introduced an efficient algorithm to solve the linearized

imaging problem. Our method combines recent findings from

the fields of stochastic optimization and compressive sensing

and turns the “overdetermined” seismic imaging problem into

a series of underdetermined dimensionality-reduced subprob-

lems. By considering these subproblems as sparse-recovery

problems, we were able to create high-fidelity images at a

fraction of the computational cost using either randomized

superposition or random subsets of sequential sources. The

latter approach can be used for marine acquisition, or other

complicated acquisition geometries.

Fig. 1. (a) Initial model (b) Inversion result starting from

2.9Hz with 7 simultaneous shots and 10 frequencies in each

of the 10 frequency bands (SNR = 25.99).
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Fig. 2. Dimensionality-reduced sparsity-promoting imaging from random subsets of 17 simultaneous shots and 10 frequencies.

We used the background velocity-model plotted in Figure 1 (a) True perturbation given by the difference between the true

velocity model and the full waveform inversion result. (b) Imaging of perturbation using supershots without redraws. (c)
Imaging of perturbation using supershots with redraws. (d) Imaging of perturbation using sequential shots with redraws. Notice

the significant improvement in image quality when using redraws with supershots after solving each LASSO subproblem. Also,

notice that the result with redraws using random sequential shots is also good.
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