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ABSTRACT

In this paper, we present a method of detecting the range
and Doppler phase of a point target using multiple antennas.
As a key illustrative example, we consider a 4 × 4 system
employing a unitary matrix waveform set, e.g., formed from
Golay complementary sequences. When a non-negligible
Doppler shift is induced by the target motion, the wave-
form matrix formed from the complementary sequences is no
longer unitary, resulting in significantly degraded target range
estimates. To solve this problem, we adopt a subspace based
approach exploiting the observation that the receive matrix
formed from matched filtering of the reflected waveforms has
a (non-trivial) null-space. Through processing of the wave-
forms with the appropriate vector from the null-space, we
can significantly improve the range detection performance.
Also, another very important target aspect is the velocity with
which the target is moving, and to determine that, the exact
Doppler phase shift induced by the target motion needs to be
estimated with reasonable accuracy. To accomplish this task,
we develop a strategy that uses the MUSIC algorithm to esti-
mate the Doppler phase, and we use simulations to show that
the phase estimates obtained are reasonably accurate even at
low SNRs.

1. INTRODUCTION

In [1], Howard et al. proposed a new multi-channel radar
scheme employing polarization diversity for obtaining mul-
tiple independent views of the target. In this scheme, Go-
lay pairs [2] of phase coded waveforms are used to provide
synchronization while Alamouti coding is used to coordinate
transmission of these waveforms on the horizontal and ver-
tical polarizations and this enables unambiguous radar po-
larimetry on a pulse-by-pulse basis, thereby reducing signal
processing complexity. In [3], the 2× 2 case was extended to
multiple antennas, and more general waveforms families were
developed that allowed for perfect separation in the case of
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negligible Doppler. In particular, scheduling for Golay pairs
was described for a 4 × 4 system and it was demonstrated
that Golay pairs achieve both perfect separation and perfect
reconstruction [2]. However, in the presence of Doppler, Go-
lay pairs are known to perform poorly and this is the primary
reason that Golay sequences have not found widespread use
in radar.

In [4], PTM sequences were used to make the Golay se-
quence transmissions resilient against Doppler shifts. The
method achieves good results for small Doppler shifts, but
the number of PRIs needed per transmission of the coded
Golay sequence matrix is large, thereby requiring the ”radar
channel” to stay constant over a relatively long time inter-
val. In this paper, we describe a Doppler compensation and
estimation scheme that exploits the subspace structure of the
received waveform matrix. We show that the received wave-
form matrix can be processed in a way that imparts a specific
structure on the subspace that it occupies, and the null-space
of this matrix can be used to minimize the effects of Doppler.
We develop a processing filter using the null-space of this ma-
trix to alleviate the effects of Doppler in target ranging, and
demonstrate that the method works over a wide range of tar-
get SNRs. In addition to that, we develop a MUSIC algorithm
based technique to estimate the Doppler phase. We also show
that the scheme works for multiple targets if their separation
and velocities follow certain conditions.

2. GOLAY COMPLEMENTARY SEQUENCES AND
TARGET DETECTION

A pair of sequences s1(n) and s2(n) of length Nc satisfy the
Golay property [2] if the sum of their autocorrelation func-
tions satisfy

Rs1s1
(l) + Rs2s2

(l) =

{
2Nc if l = 0
0 if l �= 0

(1)

for l = −Nc − 1, ..., Nc − 1. If we take the DFT of the above
equation, we get

|S1(k)|2 + |S2(k)|2 = 2Nc (2)
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In [3], we showed that if s1(n) and s2(n) are Golay comple-
mentary, then so are s∗1(−n) and s∗2(−n). Using this fact, we
can develop a 4-waveform family using Golay complemen-
tary sequences by defining

s3(n) = s∗1(−n) (3)

and
s4(n) = s∗2(−n) (4)

Now, in the case of negligible Doppler, the received signal
over 4 PRIs is given by

R(n) = HTS(n) + N(n) (5)

where S(n) is the 4 × 4 transmitted waveform matrix given
by [4]. H is the channel matrix which contains the various
round-trip path gains from each transmit antenna to each re-
ceive antenna. and N(n) is the noise matrix. To detect the
presence of the target in the delay resolution bin n, We pro-
cess the received waveform matrix as

R(n) ∗ SH(−n) = HTS(n) ∗ SH(−n) + N′(n) (6)

where ∗ is the pair-wise convolution of two matrices that fol-
lows the same order as matrix multiplication. It can be easily
shown [4] that

S(n) ∗ SH(−n) = αIδ(n) (7)

From this, it follows that

R(n) ∗ SH(−n) = αHδ(n) + N′(n) (8)

In order to detect the presence of a target in the delay resolu-
tion bin n, consider the test stastic

z(n) =
∥∥R(n) ∗ SH(n)

∥∥2

F
(9)

where the subscript F stands for Frobenius norm. A plot
of z(n) for target SNRs of 5dB and 10dB, respectively are
shown in Figure 1. As we can see from the figure, the uni-
tary waveform matrix signal design greatly facilitates high-
resolution time-localization of a target when the Doppler shift
is negligible.

3. DOPPLER COMPENSATION AND ESTIMATION

In this section, we develop a signal model that incorporates
the effects of Doppler. We assume that the target is moving at
a constant speed, which means that between two successive
PRIs, the differential Doppler phase shift is constant.

3.1. Effects of Doppler

In the presence of Doppler, the received signal may be ex-
pressed as

R(n) = HTS(n)D + N(n) (10)
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Fig. 1. Plot of z(n) without Doppler for (a) SNR = 5dB (b)
SNR = 10dB

The Doppler shift matrix D is given by

D = diag{1, ejυ′

, ej2υ′

, ej3υ′

} (11)

where υ′ is the Doppler-induced differential phase shift be-
tween two successive PRIs. As in the case of negligible
Doppler, we process the received waveform matrix as

R(n) ∗ SH(−n) = HTS(n)D ∗ SH(−n) + N′(n) (12)

In the presence of a non-negligible Doppler phase shift, the
condition in (4) is not satisfied in general, i.e.,

S(n)D ∗ SH(−n) �= αIδ(n) (13)

and unambiguous range resolution becomes significantly
more difficult. To illustrate this graphically, a plot of z(n) for
the same target SNRs of 5dB and 10dB are plotted in Figure 2
for the case of υ′ = π/3. For this particular set of round-trip
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Fig. 2. Plot of z(n) with Doppler (υ′ = π/3) for (a) SNR =
5dB (b) SNR = 10dB

channel gains, the presence of Doppler makes it impossible
to detect the target.

3.2. Doppler Processing and Phase Estimation

Towards combatting this problem, consider the matrix

R̂(n) = R(n) ∗ SH(−n) (14)

Each term of this matrix is a sum of four individual convo-
lution sequences. Next, consider the 4 × 4 matrix Yi, given

2474



by

Yi(n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ri1(n) ∗ s∗1(−n) ri1(n) ∗ s∗1(−n)
ri2(n) ∗ s2(n) ri2(n) ∗ s2(n)

ri1(n) ∗ s∗1(−n) ri1(n) ∗ s∗1(−n)
ri2(n) ∗ s2(n) ri2(n) ∗ s2(n)

ri1(n) ∗ s∗1(−n) ri1(n) ∗ s∗1(−n)
ri2(n) ∗ s2(n) ri2(n) ∗ s2(n)

ri1(n) ∗ s∗1(−n) ri1(n) ∗ s∗1(−n)
ri2(n) ∗ s2(n) ri2(n) ∗ s2(n)

⎤
⎥⎥⎦

(15)
Note that column j above contains the individual convolution
sequences that are summed up to yield the ijth term in R̂(n).

Consider the vector

w =
[

1 1 1 1
]T

(16)

In the case of no Doppler, and ignoring the noise, it is easy to
verify that

wHYi(n) = γhiδ(n) (17)

where γ is just a scaling constant, and

hi =
[

h1i h2i h3i h4i

]
(18)

The index i is associated with one of the receive antennas.
When Doppler is present, it is likewise easy to verify that

wH
DYi(n) = γh1δ(n) (19)

where
wD =

[
1 ejυ′

e2jυ′

e3jυ′
]T

(20)

and this holds for all i. This means that for n �= 0, the ma-
trices Yi are singular, and the vector producing the desired
output lies in the null-space of these matrices. Also, because
of the same waveform inputs, the matrices Yi share the same
null-space. Thus, we can form a concatenated matrix as

YC(n) =
[

Y1(n) Y2(n) Y3(n) Y4(n)
]

(21)

It is easy to verify that

wH
DYC(n) = γhδ(n) (22)

where h = [h1 h2 h3 h4]. Now, since we don’t know the
true-target delay for which YC(n) is non-singular, we can-
not simply find the null-space vector at every n. That is, an
approach is need to circumvent the fact wD is not in the null-
space of YC(n) at the true target delay. Again, WLOG the
true target delay is assumed to be n = 0. The concatenated
matrix YC(n) is formed to exploit the fact that the different
matrices share the same null-space vector.

To counter the effect of YC(0) on the null-space, instead
of working with a single chip interval, we take a length 2q+1
lag window and form the matrix

XC(n) =
[

YC(n − q) ... YC(n) ... YC(n + q)
]

(23)

The SVD of XC can be written as

XC(n) = UΛVH (24)

Since XC(n) and XC(n)XH
C (n) share the same singular vec-

tors, we will work with the latter. The idea is to subtract
out YC(0) in order to obtain the correct the null space of
RXCXC

(n). To do this, we compute the SVD of

RXCXC
(n) − YC(k)YH

C (k) (25)

for n − q ≤ k ≤ n + q and store the singular vector associ-
ated with the smallest eigenvalue. Note that out of the 2q + 1
singular vectors that we store for each n, there is at most one
singular vector that corresponds to YC(0) and this happens
whenever 0 ∈ {n − q, ..., n + q}. Again, WLOG the true
target delay here is n = 0.

The inclusion of YC(0) alters the null-space structure. In
order to find which matrix to subtract, since we don’t know
the true target delay, for each of the 2q+1 singular vectors, we
compute its inner product with the other 2q singular vectors,
and choose that singular vector that yields the smallest inner
product (magnitude) with the rest of the vectors.

This process is mathematically described as follows. Let
Umin(n) be the matrix with the 2q + 1 singular vectors as
columns. The inner product (Grammian) matrix is formed as

M(n) = UH
min(n)Umin(n) (26)

We can write M(n) as

M(n) =

⎡
⎢⎣

mn−q

...
mn+q

⎤
⎥⎦ (27)

The index of the singular vector of interest is obtained as

kopt = argmin
k

‖mk‖ (28)

To check the presence of target in the delay bin n, we process
the vector YC(n) as

z(n) =
∥∥∥uH

kopt
YC(n)

∥∥∥2

F
(29)

Ideally, the magnitude of z(n) should exhibit a sharp peak at
the true target delay and be near zero for all other values of n.

Now, to estimate the Doppler phase, we make use of the
fact that the Doppler processing vector we are looking for lies
in the null space of the matrix YC(n), and we use the MUSIC
algorithm to estimate this vector. Consider the eigendecom-
position

U(n)Σ(n)UH (n) = RXCXC
(n) − YC(kopt)Y

H
C (kopt)

(30)
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where U is a 4 × 4 matrix. Since the matrix for which we
compute the SVD is singular, we can write U can be written
as

U(n) =
[

S′(n) G′(n)
]

=
[

s1(n) s2(n) g1(n) g2(n)
]

(31)
where S′ are the ’signal’ eigenvectors and G′ are the null-
space eigenvectors. Now, from our earlier analysis, we know
that the Doppler processing vector that we seek lies in the
space spanned by the vectors of G′, and since that vector has
the structure of a complex sinusoid, we can estimate the phase
of that vector by using the MUSIC algorithm. Specifically, we
estimate the Doppler frequency from the psuedospectrum as

arg max
υ

{
1

aH(υ)G′(n)G′H(n)a(υ)

}
, −π � υ < π

(32)
where

a(υ) =
[

1 ejυ ej2υ ej3υ
]

(33)

4. SIMULATION RESULTS

We simulate a 4 × 4 baseband system and use Golay com-
plementary sequences of length 10. The channel entries are
i.i.d complex Gaussian with unit variance. The relative mo-
tion between the target and the radar introduces a Doppler
phase shift of π/3 and 2π/3 between adjacent PRIs for the
two targets which are separated Nc+1 samples apart in delay.
In Figure 3, we plot the estimated delay-Doppler image of the
target scene. The Doppler axis goes from 0-256 where 256 is
equivalent to 2π. As we can see, the peaks occur at the cor-
rect target locations in both delay and Doppler. In Figure 4,
we plot the phase estimation error, defined as

Eυ =
1

N

N∑
n=1

‖υ̂(n) − υ′‖
2

F (34)

as a function of SNR. As we can see from this figure, even
at low SNRs, the Doppler phase estimation is not poor and it
still gives a relatively accurate estimate of the target velocity.
The phase estimation error improves with the SNR.
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Fig. 3. Delay-Doppler image of the two targets
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Fig. 4. Phase estimation error as a function of SNR

5. CONCLUSIONS

We have developed a technique for accurate target ranging
and velocity estimation in the presence of Doppler using
Golay complementary sequences when multiple targets are
present. The technique is based on finding the null-space of
the waveform matrix after matched filtering at the receiver,
and then using an appropriate vector from the null-space to
process the matched filtered received waveforms over multi-
ple PRIs. Simulation results were presented that show how
the proposed technique diminishes the effects of Doppler
while still facilitating high-resolution, accurate target ranging
over a wide range of target SNRs. The target velocity estima-
tion is dependent on the Doppler phase, which is estimated by
using the MUSIC algorithm. The phase estimates obtained
using this algorithm are reasonably accurate for SNRs as low
as 0 dB, and improve with SNR.
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