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ABSTRACT
Multiple-input multiple-output (MIMO) radar is expected to

achieve good inversion performance by utilizing space diver-

sity technology. However, traditional imaging methods often

fail owing to the practical constraints that the available trans-

mitters and receivers are very few and the number of snap-

shots is very limited. More seriously, the unavoidable posi-

tion errors of the transmitters and the receivers would further

deteriorate the imaging results. In this paper, by exploiting

the sparse priority of the target, the sparse self-calibration by

maximum a posterior probability method (SSC-MAP) is pro-

posed to provide high resolution image and realize accurate

position calibration at the same time. Numerical simulations

verify the effectiveness of the proposed method.

Index Terms— MIMO radar imaging, MAP method,

sparse inversion, self-calibration.

1. INTRODUCTION

Recently, multiple-input multiple-output (MIMO) radar has

been shown to have the potential to achieve high resolution

imaging performance through space diversity [1][2]. For

MIMO radar, multiple antennas simultaneously transmit dif-

ferent waveforms and multiple antennas receive the signals

reflected from the target at different aspect angles. Therefore,

compared with traditional radar schemes, MIMO radar can

obtain more spatial samplings of the target, which directly

leads to better inversion performance.

Considering the practical complications, the number of

transmitters and receivers is frequently restricted by the sys-

tem complexity and the snapshots are constrained by the lim-

ited imaging time. So most existing methods can not pro-

vide good imaging results for MIMO radar system. Nonethe-

less, in most radar imaging applications especially the space-

borne/airborne applications, the scatterers of the targets are

often distributed sparsely, i.e. the number of actual scatterers

is much smaller than that of the potential scatterers. Hence,

by exploiting the sparse priority more accurate target descrip-

tion can be obtained by sparse recovery technique [3].

The work in this paper is supported by National Natural Science Foun-

dation of China under Grant No. 61172155.

Furthermore, the position errors of the transmitters and

the receivers are likely to exist in practical applications.

This problem, if not taken seriously, would greatly affect

the imaging performance. Various calibration methods have

been developed in the literature for direction of arrival (DOA)

estimation [4][5] while few research is related to MIMO

radar imaging. Herein we combine the sparse recovery tech-

nique and the self-calibration technique to develop the sparse

self-calibration by maximum a posterior probability method

(SSC-MAP). Moreover, according to [3], we adopt the self-

adaptive parameter estimation operation in our method to

avoid the complex parameter-choosing process. Therefore,

our SSC-MAP method alternatively iterates among sparse

reconstruction, self calibration and parameter update.

The outline of this paper is as follows. Section II estab-

lishes the imaging model for MIMO radar system with po-

sition errors. Section III describes the SSC-MAP method in

detail. Section IV briefly discusses the convergence and the

initialization of the algorithm, and presents several examples

to illustrate the performance of the proposed algorithm.

2. MODEL ESTABLISHMENT

Consider a narrowband colocated MIMO radar system with

M transmitters and N receivers as described in [2]. Let sm =
(sm(1) . . . sm(L))T represent the transmitted waveform for

the mth (m = 1 . . .M ) transmitter [3]. We collect the set

of the transmitted waveforms {sm}Mm=1 into a matrix s =
(s1 . . . sM )T . Assuming there are U range bins and V angu-

lar bins in the scene of interest, S refers to the zero-appended

waveform matrix considering the shift in sampling intervals,

S = [s 0M×(U−1)]M×(L+U−1). (1)

As {θv}Vv=1 divides the scene, the transmitting and receiv-

ing steering vectors, for the vth angular bin, are denoted by

av and bv , respectively. Considering a special configuration

that a uniform linear array is used for both the transmitters and

the receivers where the first transmitter and the first receiver

are assumed to be placed at the same position, the steering

vectors can be written as

av =
(
1 e

− j2πΔt sin θv
λ0 . . . e

− j2π(M−1)Δt sin θv
λ0

)T

, (2)
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bv =
(
1 e

− j2πΔr sin θv
λ0 . . . e

− j2π(N−1)Δr sin θv
λ0

)T

, (3)

where Δt and Δr represent the inter-element spacing of the

transmitting array and the receiving array respectively, and λ0

is the carrier wavelength of the system.

We let {xu,v}U,V
u=1,v=1 denote the complex reflection coef-

ficient of each bin in the scene of interest. The received echo

matrix Y can be written as

Y =

U∑
u=1

V∑
v=1

xu,vbva
T
v SJu +E, (4)

where E denotes the additive noise matrix and Ju represents

the shift matrix designed to describe the reflected waveform

from different range bin, and is defined by

Ju =

⎛
⎜⎜⎜⎜⎜⎝

u︷ ︸︸ ︷
0...01 0

. . .

1
0

⎞
⎟⎟⎟⎟⎟⎠

(L+U−1)×(L+U−1).

To represent the received signal in its vector form, we de-

fine y = vec(Y ), e = vec(E) and hu,v = vec(bva
T
v SJu).

Moreover, we let

H = (h1,1 h1,2 . . . hU,V ) ,

x = (x1,1 x1,2 . . . xU,V )
T
.

(5)

In this way, the received signal can be redefined as

y = Hx+ e. (6)

Taking the practical constraints into consideration, (6)

is always an underdetermined function by which good in-

verse performance can not be achieved without enough prior

knowledge. For most spaceborne/airborne target, the sparse

priority can be utilized for MIMO radar high-resolution imag-

ing with limited measurements.

For practical application, supposing that the position er-

rors of the transmitters and the receivers are {dtm}Mm=1 and

{drn}Nn=1 respectively, the steering vectors can be trans-

formed into

a
′
v =

(
e
− j2πdt1 sin θv

λ0 . . . e
− j2π((M−1)Δt+dtM ) sin θv

λ0

)T

,

b
′
v =

(
e
− j2πdr1 sin θv

λ0 . . . e
− j2π((M−1)Δr+drM ) sin θv

λ0

)T

.

(7)

Considering that the position errors are rather small, we

can make the following approximation

e
− j2πdtm sin θv

λ0 ≈ 1− j2πdtm sin θv
λ0

, m = 1, 2...M,

e
− j2πdrn sin θv

λ0 ≈ 1− j2πdrn sin θv
λ0

, n = 1, 2...N.

(8)

Next, we define the transmitting error vector Λt
v and the

receiving error vector Λt
v , for vth angular bin, as following

Λt
v =

(
Λt
v1 Λt

v2 . . . Λt
vM

)T
,

Λr
v = (Λr

v1 Λr
v2 . . . Λr

vN )
T
,

(9)

where

Λt
vm = −j2πdtm sin θv

λ0
e
− j2π(m−1)Δt sin θv

λ0 ,

Λr
vn = −j2πdrn sin θv

λ0
e
− j2π(n−1)Δr sin θv

λ0 .

(10)

So the received signal with position errors can be written as

Y =
U∑

u=1

V∑
v=1

xu,vb
′
va

′T
v SJu +E, (11)

where b
′
va

′T
v = bva

T
v + bvΛ

tT
v +Λr

va
T
v +Λr

vΛ
tT
v . Further

ignoring the product of Λr
v and ΛtT

v yields

b
′
va

′T
v ≈ bva

T
v + bvΛ

tT
v +Λr

va
T
v . (12)

Similar to (6), the received signal can be redefined as

y = (H +Φt +Φr)x+ e, (13)

where

Φt =
(
ϕt

1,1 . . .ϕ
t
U,V

)
,ϕt

u,v = vec
(
bvΛ

tT
v SJu

)
,

Φr =
(
ϕr

1,1 . . .ϕ
r
U,V

)
,ϕr

u,v = vec
(
Λr

ua
T
v SJu

)
.

(14)

3. SSC-MAP ALGORITHM

Suppose that every potential scatterer {xu,v}U,V
u=1,v=1 exploits

sparsity with laplace prior p(xu,v) = e−|xu,v| [6]. Hence, x
satisfies

p(x) = exp
{−∥∥x∥∥

1

}
. (15)

Assume that the position error of every transmitter and every

receiver is independent from each other and satisfies

{dtm}Mm=1 ∼ N (0, ξt), {drn}Nn=1 ∼ N (0, ξr). (16)

Defining η as the noise power, we assume

y|{dtm, drn}M,N
m=1,n=1,x, η ∼ CN ((H +Φt +Φr)x, ηI).

(17)

We can estimate x, {dtm}Mm=1, {drn}Nn=1, η, ξt and ξr via

MAP method which maximizes

p
(
x, {dtm, drn}M,N

m=1,n=1, η, ξt, ξr|y
)

∝ p (x) p
({dtm}Mm=1

)
p
({drn}Nn=1

)
· p

(
y|{dtm, drn}M,N

m=1,n=1,x, η
)
p(η)p(ξt)p(ξr)

(18)

Assuming p(η) ∝ 1, p(ξt) ∝ 1, p(ξr) ∝ 1 and combining

with (15)(16)(17), then (18) can be expanded as

p
(
x, {dtm, drn}M,N

m=1,n=1, ξt, ξr, η|y
)
∝ exp {−‖x‖1}

·
M∏

m=1

1√
2πξt

exp

{
−dt2m

2ξt

} N∏
n=1

1√
2πξr

exp

{
−dr2n
2ξr

}

· 1

(πη)N(L+U−1)
exp

{
−‖y − (H +Φt +Φr)x‖22

η

}
.

(19)
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Taking the negative logarithm operation to (19), we get the

following cost function

F = ‖x‖1 + M

2
ln ξt +

N

2
ln ξr +

M∑
m=1

dt2m
2ξt

+
N∑

n=1

dr2n
2ξr

+N(L+ U − 1) ln η +
1

η

∥∥y − (H +Φt +Φr)x
∥∥2
2
.

(20)

The MAP method equivalently results in the minimiza-

tion of F with respect to x,{dtm, drn}M,N
m=1,n=1, ξt, ξr, η,

which is a nonlinear problem. According to [4], we adopt an

alternately iterative method. Defining k as the iteration index,

we optimize xk+1 with {dtmk, drnk}M,N
m=1,n=1, ηk, ξtk, ξrk

fixed and then optimize {dtm(k+1), drn(k+1)}M,N
m=1,n=1 with

xk+1, ηk, ξtk, ξrk fixed. Then, the parameters ηk+1, ξt(k+1),

ξr(k+1) are updated at each iteration. Detailed algorithm is

stated as follows.

3.1. Sparse Reconstruction

Supposing that {dtmk, drnk}M,N
m=1,n=1 are known and then

defining Γk = H + Φt
k + Φr

k, we try to find the optimal

xk+1 to minimize the following equivalent cost function.

F1 = ‖y − Γkxk+1‖22 + ηk‖xk+1‖1. (21)

This typical �1 regularization least square problem can be

reformulated as optimizing pk+1, qk+1,ρk+1 to⎧⎪⎪⎨
⎪⎪⎩

min

∥∥∥∥Γ̃k

(
pk+1

qk+1

)
− ỹ

∥∥∥∥
2

2

+ ηk1
Tρk+1,

s.t.
(
p2u,v(k+1) + q2u,v(k+1)

) 1
2 ≤ ρu,v(k+1).

(22)

where pk+1 = Re (xk+1), qk+1 = Im (xk+1).

Γ̃k =

(
Re (Γk) −Im (Γk)
Im (Γk) Re (Γk)

)
, ỹ =

(
Re(y)
Im(y)

)
(23)

Here we use the truncated Newton interior-point method

[7] to solve (25), which is proved to have good balance be-

tween convergent performance and computer complexity.

3.2. Self Calibration

Next, we use xk+1 to estimate {dtm(k+1), drn(k+1)}M,N
m=1,n=1.

Denoting γtk = ηk/2ξtk,γrk = ηk/2ξrk, the cost function

can be simplified as

F2 = ‖y − Γk+1xk+1‖22

+ γtk

M∑
m=1

dt2m(k+1) + γrk

N∑
n=1

dr2n(k+1).
(24)

In (24), considering that the transmitters and the receivers

are independent from each other, we calibrate every position

error of the transmitter and the receiver respectively. For the

mth transmitter, we optimize dtm(k+1) to{
min‖ztm

k −Φtm
k dtm(k+1)xk+1‖22 + γtkdt

2
m(k+1)

s.t. dtm(k+1) is real.
(25)

where Φtm
k is the corresponding Φt

k with dtm̃ = δ (m̃−m),

ztm
k = y −

(
H +Φr

k +
∑m−1

i=1 Φti
k dti(k+1)

)
xk+1. We get

dtm(k+1) =
Re

(
(Φtm

k xk+1)
H
ztm
k

)
Re

(
(Φtm

k xk+1)
H
Φtm

k xk+1

)
+ γtk

. (26)

After taking the operation above for every transmitter

to obtain {dtm(k+1)}Mm=1, we can get Φt
k+1 according to

(10)(14). Similarly, for the nth receiver, we expect to find the

optimal drn(k+1) to{
min‖zrn

k −Φrn
k drn(k+1)xk+1‖22 + γrkdr

2
n(k+1)

s.t. drn(k+1) is real.
(27)

where Φrn
k is the corresponding Φr

k with drñ = δ(ñ − n),

zrn
k = y−

(
H +Φt

k+1 +
∑n−1

j=1 Φrj
k drj(k+1)

)
xk+1. Then,

we find the optimal solution as

drn(k+1) =
Re

(
(Φrn

k xk+1)
H
zrn
k

)
Re

(
(Φrn

k xk+1)
H
Φrn

k xk+1

)
+ γrk

. (28)

In a similar way, we can update Φr
k+1 from {drn(k+1)}Nn=1.

3.3. Parameter Update

To avoid the complex criteria for parameter estimation [8],

here we propose a self-adaptive parameter updating method

to dynamically determine ηk+1, ξt(k+1), ξr(k+1). Setting

∂F/∂ηk+1 = 0 leads to

ηk+1 =

∥∥y − (H +Φt
k+1 +Φr

k+1)xk+1

∥∥2
2

N(L+ U − 1)
. (29)

Similarly, letting ∂F/∂ξt(k+1) = ∂F/∂ξr(k+1) = 0, we get

ξt(k+1) =
1

M

M∑
m=1

dt2m(k+1), ξr(k+1) =
1

N

N∑
n=1

dr2n(k+1).

(30)

We set k ← k + 1 and repeat the three steps above until

SSC-MAP shows no obvious improvement.

4. NUMERICAL SIMULATIONS

Considering the convexity of F1, the interior method shows

good convergent performance [7]. Besides, {dtm(k+1)}Mm=1,

{drn(k+1)}Nn=1 and ηk+1, ξt(k+1), ξr(k+1) are all closed form

solutions to the minimization of the cost function F . Hence

the value of F keeps decreasing as k increases. However, a

key guarantee for the convergence to a good solution is the

initialization of the algorithm. Here we initialize x by apply-

ing matched filter (MF).

xu,v(0) = (hH
u,vhu,v)

−1hH
u,vy. (31)

Assuming {dtm(0)}Mm=1 = {drn(0)}Nn=1 = 0, thus

η0, ξt(0) and ξr(0) can be obtained according to (29)(30).

In order to test the performance of SSC-MAP, we consider

a system with M = 5 transmitters, N = 5 receivers and the
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Fig. 1. Scatterer distribution of the target.
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Fig. 2. Imaging result without calibration.

number of snapshots L = 63. The transmitters and the re-

ceivers are expected to be uniformly positioned with spacings

of 2.5λ and 0.5λ, respectively. We set ξt = (0.1λ)2, ξr =
(0.02λ)2 and the signal-to-noise ratio (SNR) to 10dB.

We provide the original scatterer distribution of the target

in Fig. 1. There are U = 24 bins in the range direction and

V = 63 bins in the angular direction. And there are 11 scat-

terers with unit reflection coefficient in the scene of interest.

Fig. 2 shows the inversion performance without calibra-

tion, which is noticeably poor because of the position errors.

Fig. 3 represents the imaging result via SSC-MAP method.

As expected, the new method can achieve better reconstruc-

tion performance with accurate self calibration ability.

5. CONCLUSIONS

We present the SSC-MAP method to realize high resolution

imaging and self-calibrating the position errors for MIMO

radar system. The derivations and numerical examples illus-
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Fig. 3. Imaging result via SSC-MAP.

trate the effectiveness of the new method, which shows the

potential for the method to be applied in practical system.
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