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ABSTRACT

A multiple-input multiple-output (MIMO) radar can improve system
performance with waveform and spatial diversities. Mathematically,
the multiple independent waveforms increase the dimension of sig-
nal space, so optimal transmission power allocation deserves inves-
tigation. The majority of the literature prefers to omit the effect of
propagation attenuation, and considers the receiving gain vectors to
be independently and identically distributed (i.i.d.) in power alloca-
tion. In this paper, we integrate the propagation losses into MIMO
radar signal model, and investigate the power allocation problems
under three popular criteria: maximizing the mutual information,
minimizing the minimum mean square errors, and maximizing the
echo energy. As their objective functions are either convex or con-
cave, the optimal strategies are theoretically guaranteed.

Index Terms— MIMO radar, power allocation, mutual infor-
mation, minimum mean square error, propagation attenuation.

1. INTRODUCTION

A multiple-input multiple-output (MIMO) radar system employs
multiple distributed or co-located antennas in transmission and re-
ceiving, and it may outperform a monostatic configuration on target
detection, information extraction, and target estimation [1–7]. If all
the transmitters were to emit mutually independent waveforms, the
dimension of signal space would be identical to the number of trans-
mission antennas. Therefore, adaptively allocating the transmission
power within the entire noise space is a smart choice.

MIMO radar power allocation is an active research subarea. In
[2], the authors suggested two criteria in a white Gaussian noise en-
vironment: maximizing the mutual information (MI) between the
received signal and the target scatterer matrix, and minimizing the
minimum mean square error (MMSE) of the estimate of the target
scatterer matrix. Later, the MI based power allocation was extended
to MIMO radar space-time codes design [3], while the interaction
between a jammer and a MIMO radar system is investigated from a
game theoretic perspective [4]. In [6], the author suggested to maxi-
mize the total energy of the sampled echoes in power allocation.

In [1–6], the path gain for a bistatic geometry is globally mod-
eled as a random scalar, and the path gain vectors—the collec-
tion of all path gain scalars for a certain receiver—are assumed to
be independently and identically distributed (i.i.d.). However, as
transmitter-target-receiver geometries may significantly differ from
propagation distances and antenna gains [8], their power attenuation
levels are not identical. As a result, the i.i.d. assumption is not
appropriate. In this paper, a path gain scalar is modeled as a prod-
uct of two components: the propagation loss factor and the target
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reflection coefficient. The former is a function of bistatic distance
and antenna beampattern, and it depends on geometry. The target
reflection coefficients are i.i.d. random variables if the antennas are
sufficiently separated [1]. After including the propagation loss di-
versity, we revisit the MIMO radar power allocation problems under
various criteria including MI maximization, MMSE minimization,
and the energy maximization, and this is the main contribution of
this paper. MIMO radar power allocation with propagation loss
was also studied in [7], where its objective is to minimize the target
localization Cramér-Rao bounds.

The rest of this paper is as follows. Section 2 gives the MIMO
radar signal model with propagation losses, while the optimal power
allocation strategies under different criteria are investigated in Sec-
tion 3. There are numerical examples in Section 4, and conclusions
are drawn in the end.

2. SIGNAL MODEL

2.1. Classical Model

Let the MIMO radar system be composed of nt transmitters and nr

receivers, all properly synchronized. Suppose that the transmitted
waveform of the jth transmitter is sj , of which the size is K × 1,
and then the sampled echoes for receiver i is modeled as [2–5]

yi = Shi +wi, (1)

where S = [s1, s2, · · · , snt ] is the K × nt transmitted waveform
matrix with K ≥ nt, wi represents the K × 1 receiver noise vector,
and hi = [hi,1, hi,2, · · · , hi,nt ]

T stands for the random path gain
vector for receiver i. Defining H = [h1,h2, · · · ,hnr ], the received
signal matrix Y = [y1,y2, · · · ,ynr

] can be compactly written as

Y = SH +W , (2)

where W = [w1,w2, · · · ,wnr ] represents the K × nr noise ma-
trix. This classical model has three fundamental assumptions: 1)
the receivers are homogeneous, and then wi’s are i.i.d. complex
Gaussian vectors; 2) hi’s are i.i.d. complex Gaussian random vec-
tors, and 3) W and H are mutually independent. The first and the
last assumptions are technically fair; however, the second one is ar-
guable, as it ignores the spatial distinction of different bistatic paths.
This paper will relax the second assumption, and revisit the MIMO
radar power allocation problems.

2.2. Including Propagation Loss Diversities

Based on the bistatic radar equation [8, p.68], a path gain scalar
hi,j contains two parts: the target reflection coefficient gi,j and the
propagation loss factor pi,j . Suppose that the transmitters and re-
ceivers are sufficiently separated; the reflection gains gi,j’s for dif-
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ferent bistatic constellations are independent [1]. Furthermore, if the
target is comprised of a large number of small i.i.d. random scatter-
ers, the gi’s would be i.i.d. complex Gaussian vectors with proba-
bility density function gi ∼ CN (0, σ2

gInt) due to the central limit
theorem [1], where gi � [gi,1, gi,2, · · · , gi,nt ]

T denotes the target
reflection gain vector for the ith receiver. The propagation loss factor
pi,j is a function of target proximity and antenna properties [8, p.68]

pi,j =
c

djtd
i
r

√
Aj

tA
i
r

, (3)

where c is a constant, djt and dir respectively denote the distances
between the target and transmitter j and that between the target and
the ith receiver, while Aj

t and Ai
r respectively denote the transmis-

sion and receiving antenna gains. Obviously, the pi,j’s would most
likely differ in a realistic MIMO configuration; therefore, the ideal
condition that pi = pk for i �= k may not be guaranteed, where
pi = [pi,1, pi,2, · · · , pi,nt ]

T . As a result, hi’s are no longer iden-
tically distributed. Note that if the transmission antennas are omni-
directional the pi,j’s would be unavailable, as one does not know
where echoes are from. However, if the transmitters have a cer-
tain beamforming capability and they cooperatively and sequentially
search voxels of interest (or track a moving target) assuming beam
synchronization, the pi,j’s are easily approximable.

Thus considering propagation losses, an improved MIMO radar
signal model might be

Y = S(G� P ) +W , (4)

where G = [g1, g2, · · · , gnr
] is the target scatterer matrix, P =

[p1,p2, · · · ,pnr
] denotes the propagation loss matrix, and � indi-

cates Hadamard product. In (4), each column of Y is expressed as
yi = S(gi�pi)+wi, where yi’s are independent Gaussian random
vectors, but with different pdfs.

3. OPTIMAL MIMO RADAR POWER ALLOCATION

We are interested in the MIMO radar power allocation with heteroge-
neous propagation losses. As [1] and [5], we assume that the receiver
noise is white, say wi ∼ CN (0, σ2

wIK), and that the waveforms are
orthogonal, say sT

j sk = 0 for j �= k, but with different power. As a
consequence, the conditional pdf of Y for a given S is

f(Y |S) =

nr∏
i=1

f(yi|S), (5)

where f(yi|S) ∼ CN(
0, σ2

wIK + σ2
gSΛiS

H
)

, and Λi =

diag
(
[p2i,1, p

2
i,2, · · · , p2i,nt

)
. Let Ej = sT

j sj . The optimal power

allocation strategy E = [E1, E2, · · · , Ent ]
T will be investigated

under different criteria in the following. Since the objective func-
tions of those criteria have distinct properties, the optimal power
allocation solutions may not be the same, see Section 4.

3.1. Mutual Information Criterion

The mutual information (MI) criterion was suggested for MIMO
radar power allocation in [2–4]. Under this criterion, the optimal
strategy maximizes the MI between the received signal matrix Y
and the radar scatterer matrix G, which is defined as I(Y ;G|S) =
h(Y |S) − h(Y |G,S) = h(Y |S) − h(W ), where h(·) indicates

differential entropy [2]. Since

h(Y |S) = −
∫

f(Y |S) log f(Y |S)dY

=

nr∑
i=1

log
[
det(σ2

wIK + σ2
gSΛiS

H)
]
+ c1,

(6)

where c1 = nrK log π + nrK is a constant, and since

h(W ) = −
∫

f(W ) log f(W )dW = nrK log σ2
w + c1, (7)

we have

I =

nr∑
i=1

log
[
det(σ2

wIK + σ2
gSΛiS

H)
]− nrK log σ2

w, (8)

where I � I(Y ;G|S) for notational simplicity. Let U denote

the K × K orthnormal basis matrix including all (sj/
√

Ej)’s,

and then we have det(σ2
wIK + σ2

gSΛiS
H) = det(σ2

wIK +

σ2
gU

HSΛiS
HU). Therefore, I could be simplified as

I =

nr∑
i=1

log
[
det(σ2

wIK + Γi)
]− nrK log σ2

w, (9)

where Γi � σ2
gdiag([E1p

2
i,1, E2p

2
i,2, · · · , Entp

2
i,nt

,01×(K−nt)]).
As the second item of (9) is irrelevant to E, the optimal power
allocation strategy can be obtained via

max
E

nr∑
i=1

log
[
det(σ2

wIK + Γi)
]
, s.t.

nt∑
j=1

Ej ≤ Ē, (10)

where Ē bounds the total power. Substituting Γi into (10), the opti-
mization is reformulated as

max
E

f1(E) �
nr∑
i=1

nt∑
j=1

log(σ2
w + Ejσ

2
gp

2
i,j), s.t.

nt∑
j=1

Ej ≤ Ē.

(11)
The objective function f1(E) has nt×nr items, and each parameter
Ej involves nr elements. As

∂2f1(E)

∂E2
j

= −
nr∑
i=1

(σ2
gp

2
i,j)

2

(σ2
w + Ejσ2

gp2i,j)
2
< 0, (12)

the Hessian matrix of f1(E) is negative definite. Therefore, f1(E)
is concave, and the optimal solution of (11) can be numerically
reached via gradient based approaches.

Theoretically, the maximum point of a concave function could
be obtained by Lagrange multipliers. Define

L(E, λ) = f1(E) + λ(Ē −
nt∑
j=1

Ej), (13)

where λ denotes the Lagrange multiplier. We have

λ =

nr∑
i=1

σ2
gp

2
i,j

σ2
w + Ejσ2

gp2i,j
(14)
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by letting
∂L(E,λ)

∂Ej
= 0 and

∂L(E,λ)
∂λ

= 0, and recalling the con-

straint and Ē =
∑nt

j=1 Ej . As opposed to the propagation loss free
model based power allocation [2–4], Ej is a nonlinear function of
the nr path gains for a given λ. There is no closed-form expression
of Ej , and the concise water-filling results of [2–4] do not hold here.

3.2. Minimum Mean Square Error Criterion

The minimum mean square error (MMSE) criterion was suggested
for MIMO radar power allocation in [2]. Under this criterion, the
optimal strategy minimizes the MMSE

E = E{||G− Ĝ||2F } =

nr∑
i=1

E{||gi − ĝi||2F }, (15)

where || · ||F indicates the Frobenius norm, while Ĝ and ĝi respec-
tively denote the optimal estimates of G and gi. Since yi and gi are
jointly Gaussian, the MMSE estimator is linear ĝi = Biyi, where
Bi can be obtained via

Bi = argmin
B

E{||gi −B(S(gi � pi) +wi)||2F }
= σ2

gdiag(pi)S
H(σ2

wIK + σ2
gSΛiS

H)−1.
(16)

Substituting Bi into (15), we have

E = ntnrσ
2
g − σ4

g

nt∑
i=1

Tr
(
SΛiS

H(σ2
wIK + σ2

gSΛiS
H)−1

)

= ntnrσ
2
g − σ2

g

nt∑
i=1

Tr
(
Γi(σ

2
wIK + Γi)

−1
)
. (17)

Let f2(E) � E . Recalling Γi, f2(E) is recast as

f2(E) =

nr∑
i=1

nt∑
j=1

σ2
gσ

2
w

σ2
w + Ejσ2

gp2i,j
. (18)

Consequently, the optimal strategy can be obtained via

min
E

f2(E), s.t.

nt∑
j=1

Ej ≤ Ē. (19)

Again, since
∂2f2(E)

∂E2
j

=
∑nr

i=1

2σ2
wσ6

gp
4
i,j

(σ2
w+Ejσ

2
gp

2
i,j

)3
> 0, the Hessian

matrix of f2(E) is positive definite. Therefore, f2(E) is convex, and
the optimal solution of (11) can be numerically acquired. Similar to
the MI criterion, the optimal solution here is no longer water-filling.

3.3. Echo Power Maximization Criterion

In [6], the author suggested to maximize the expectation of the en-
ergy of the received signal

max
E

P � E

{
Tr(Y Y H)

}
(20)

in power allocation. As E

{
Tr(yiy

H
i )

}
= Kσ2

w + Tr(Γi), the
optimal strategy can be obtained via

max
E

f3(E) �
nr∑
i=1

nt∑
j=1

Ejσ
2
gp

2
i,j , s.t.

nt∑
j=1

Ej ≤ Ē. (21)

Obviously, f3(E) is a linearly weighted combination of Ej’s. Let

ξj = ∂f3(E)
∂Ej

=
∑nr

i=1 σ
2
gp

2
i,j . The optimal strategy puts all power

to the transmitter with largest ξ value, say ξmax. If all ξj’s are dis-
tinct, the MIMO system will degenerate to a multistatic one under
the optimal transmission scenario. It is interesting to see that the bi-
nary on-off action for a transmitter does not depend on Ē under this
circumstance. If more than one transmitter shares ξmax, Ē could be
arbitrarily divided among them.
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Fig. 1. The MIMO radar configuration in two dimensions.

4. NUMERICAL RESULTS

This section numerically shows the optimal power allocation strate-
gies and performance gains under those three criteria, and compares
them with those for the uniform strategy. Let nt = 4 and nr = 5,
and they are distributed in a 40×40 km2 surveillance area as shown
in Fig. 1. Let all antennas be isotropic, and then the propagation loss
could be simplified as pi,j = c/djtd

i
r . Furthermore, we set σw = 1

and σg = 1 for simplicity. In simulation, we uniformly divide the
surveillance area into 100 × 100 square cells, and then use the cen-
ter of each cell as a reference point to calculate the propagation gains
and the optimal power allocation strategies. As the MIMO configu-
ration is symmetric about x−axis, y−axis, and the coordinate origin,
we only plot the optimal strategies of transmitter Tx-1. Those for the
others can be obtained via a proper rotation of that for Tx-1.

The optimal strategies for Tx-1 with different power bounds un-
der MI criterion are shown in Figs. 2 (a) and (b), where the value at
a point, say (x, y), stands for the optimal power level of Tx-1 if the
target is located at (x, y). Obviously, they are geometry dependent
instead of uniform. Figs. 2 (c) and (d) show the optimal MI values
Iopt, where the value at (x, y) indicates the MI level under the opti-
mal strategy. Figs. 2 (e) and (f) depict the MI improvement over the
uniform allocation strategy Iu. Clearly, with the optimal strategy the
system performance could be improved.

The optimal strategies and performance gains under the MMSE
criterion are collected in Fig. 3, and the observations are similar to
those of the previous criterion. As for the energy based criterion,
a transmitter is either full-loaded or zero-loaded. The binary on-off
actions for Tx-1 are shown in Fig. 4 (a), and they do not depend
on the total power. The normalized performance enhancements are
illustrated in Fig. 4 (b). We can see that the geometrically adaptive
allocation is better than the uniform one in most areas.

5. CONCLUSIONS

Adaptive power allocation among different transmitters is an active
research topic for MIMO radar. In this paper, we integrate the propa-
gation losses into the MIMO radar signal model, and recap the power
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Fig. 2. The power allocation strategies for Tx-1 and MIMO radar

performance gains for different Ē’s with MI criterion. The value at

a point, say (x, y), stands for the optimal power level of Tx-1 if the

target is located at (x, y) in figures (a) and (b), while it stands for the

MI or MI enhancements under the optimal strategies if the target is

presented at (x, y) in the rest ones.

allocation problems under different criteria including MI, MMSE,
and energy. Their optimal strategies are geometry dependent in-
stead of uniform under the i.i.d. target reflection coefficient and the
i.i.d. receiver noise conditions. The power allocation with heteroge-
neous propagation losses can also be investigated under other criteria
including Neyman-Pearson and Kullback-Leiber divergence, or ex-
tended to space time coding models.
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