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ABSTRACT

This paper addresses the problem of adaptive sequential waveform
design for system parameter estimation. This problem arises in sev-
eral applications such as radar, sonar, or tomography. In the pro-
posed technique, the transmit/input signal waveform is optimally
determined at each step, based on the measurements in the previ-
ous steps. The waveform is determined to minimize the Bayesian
Cramér-Rao bound (BCRB) for estimation of the unknown system
parameter at each step. The algorithm is tested for spatial transmit
waveform design in multiple-input multiple-output radar target angle
estimation at very low signal-to-noise ratio. The simulations show
that the proposed adaptive waveform design achieves significantly
higher rate of performance improvement as a function of the pulse
index, compared to identical signal transmission.

Index Terms— Sequential waveform design, Bayesian Cramér-
Rao bound (BCRB), Waveform optimization, Cognitive radar (CR).

1. INTRODUCTION

Waveform optimization for system parameter estimation is an
emerging topic in signal processing with applications in many areas,
such as, radar, sonar, tomopraphy. The basic idea is to optimize
a chosen criterion such as, statistical bounds, probability of error,
output signal-to-noise ratio (SNR), information theoretic methods,
and so on, with respect to the transmit waveform or the transmit
auto-correlation matrix. Waveform optimization has been investi-
gated based on the Cramér-Rao bound (CRB), for multiple-input
multiple-output (MIMO) radar in case of single target in [1], and
generalized for the case of multiple targets in [2]. An information
theoretic waveform optimization point of view is investigated for
example in [3-5].

In the recent years, the cognitive radar (CR) approach has been
proposed [6, 7] and intensively investigated. In this approach, the
radar system adaptively interrogates a propagation channel using all
available knowledge including previous measurements, task priori-
ties, and external databases. In [8] two different waveform design
techniques based on sequential hypothesis testing for active systems
operating in a target recognition application were derived. In [9] an
optimal waveform design for CR based on maximizing the mutual
information and the output SNR is considered. In [10], an adaptive
polarized waveform design for target tracking based on sequential
Bayesian inference has been presented.

In this paper, we propose a new technique for optimal sequen-
tial waveform design. Instead of transmission of a pulse train with
predefined waveform, each waveform in the pulse train is adaptively
determined based on the previously received data, often referred as
memory or history. The considered observation model is general
which may be useful in many applications. The Bayesian Cramér

Rao bound (BCRB) [11] is used as a criterion for optimality. In
other words, we seek to find an optimal waveform design, which
minimizes sequentially the BCRB on the system parameter estima-
tion, such as target direction in radars, based on previous received
data. The main advantage of the proposed method is that it is capa-
ble to automatically focus on the target after a few trials/pulses, at
very low signal-to-noise ratios (SNRs).

In the next section, the system model is described and the prob-
lem is formulated. The proposed sequential waveform design tech-
nique is derived in Section 3. In Section 4, the performance of the
proposed technique are evaluated and compared to identical wave-
form design for radar systems. Finally, our conclusions appear in
Section 5.

2. SYSTEMMODEL

Consider the following general data model which is useful in many
applications such as radar, sonar, or tomography

Xk = H (θ)Sk +Nk (1)

where the columns of Xk ∈ C
N×L, Sk ∈ C

M×L, and Nk ∈
C

N×L represent the L snapshots of the data, transmit/input sig-
nal, and noise vectors, respectively, at the kth step. The matrix
H (θ) ∈ C

N×M denotes the system transfer function, which de-
pends on the unknown random variable θ with a-priori probability
density function (pdf) fθ(·). The columns of Nk are independent
and identically distributed complex circularly symmetric Gaussian
random vectors with zero mean and covariance matrix R. This
general model represents several signal processing problems. We
are interested in optimal design of the transmit signal matrix at the
kth step, Sk, given the observations in previous steps (history),
X

(k−1) = [X1, . . . ,Xk−1]. The criterion to be optimized, is the
BCRB for estimation of θ fromX

(k).

3. SEQUENTIAL WAVEFORM OPTIMIZATION

Consider the BCRB on the estimation error of θ. Under some regu-
larity conditions, the BCRB for estimation of θ at step k is given by
[11]

Ck ≥ (IDk
+ IP )

−1 (2)
where IDk

and IP denote the Fisher information from data at step k
and from the prior statistical knowledge, respectively. In the follow-
ing, we derive the Fisher information, IDk

, for the model given in
(1). Using the definition of IDk

and by applying the Bayes theorem
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one obtains

IDk
= −E

(
∂2 log f

X(k)|θ

∂θ2

)
= IDk−1 +ΔIDk

(3)

whereΔIDk
is the incremental Bayesian Fisher information (IBFI),

defined as

ΔIDk
= −E

(
∂2 log f

Xk|X
(k−1),θ

∂θ2

)
= E

[
ΔĨDk

(
X

(k−1)
)]

(4)

in which

ΔĨDk

(
X

(k−1)
)
= −E

(
∂2 log f

Xk|X
(k−1),θ

∂θ2

∣∣∣∣∣ X(k−1)

)
. (5)

The expectations in (4) and (5) are performed with respect to the
joint pdf of

(
X

(k), θ
)
, and the conditional pdf of

(
Xk, θ | X(k−1)

)
,

respectively.
By using the expression for the Fisher information in case of

deterministic signal in Gaussian noise [12], and applying the law of
total expectation,ΔĨDk

(
X

(k−1)
)
can be written as

ΔĨDk
= −E

(
∂2 log f

Xk|X
(k−1),θ

∂θ2

∣∣∣∣∣ X(k−1)

)

= E

[
−E

(
∂2 log f

Xk|X
(k−1),θ

∂θ2

∣∣∣∣∣ X(k−1), θ

) ∣∣∣∣∣ X(k−1)

]
= 2LE

{
Re
[
tr
(
Ḣ

H
R

−1
ḢRSk

) ∣∣∣ X(k−1)
]}

(6)

where Re (·) and tr (·), denote the real part and trace operators, re-
spectively, and Ḣ �

= dH(θ)
dθ

,RSk

�
= 1

L
SkS

H
k . For simplicity of no-

tations, we omit the dependency of Ḣ on θ, and ofΔĨDk
onX(k−1).

Using (4) and (6), the Fisher information in (3) can be expressed as

IDk
= IDk−1

+ 2LE
(
Re
{
tr
[
E
(
Ḣ

H
R

−1
Ḣ

∣∣∣ X(k−1)
)
RSk

]})
. (7)

As mentioned above, we aim to find the transmit signal matrix,
Sk, which minimizes the BCRB at the kth step,Ck. Based on (7) the
BCRB depends on the transmit waveform only through RSk

. Ac-
cordingly, we aim to find the optimal transmit signal auto-correlation
matrixRSk

. In addition, we will assume that the transmit signal en-
ergy is limited. Under the total energy constraint, i.e. tr (RSk

) ≤ P ,
using (2), and the fact that IP is independent ofRSk

, the optimiza-
tion problem is given by

RSk
=argmax

RSk

IDk

s.t. tr (RSk
) ≤ P

RSk
� 0. (8)

The first component in the r.h.s of (7), IDk−1 , denotes the Fisher
information at step k − 1, and it depends only on the observations
X

(k−1), which are independent ofRSk
. Therefore, for optimization

of (7), only the second term should be considered. The optimiza-

tion of (7) can be performed by maximizing the inner term in the
outer expectation of (7) independently for each X(k−1). Hence, the
optimization problem can be rewritten as

RSk
=argmax

RSk

Re
{
tr
[
E
(
Ḣ

H
R

−1
Ḣ

∣∣∣ X(k−1)
)
RSk

]}
s.t. tr (RSk

) ≤ P

RSk
� 0. (9)

Let

Γ

(
X

(k−1)
)

�
= E

(
Ḣ

H (θ)R−1
Ḣ (θ)

∣∣∣ X(k−1)
)
. (10)

Then by using the singular value decomposition (SVD) of RSk
:

RSk
= UkΛkU

H
k , the optimization problem in (9) becomes(

Uk,Λk

)
=arg max

Uk,Λk

Re
{
tr
[
U

H
k Γ

(
X

(k−1)
)
UkΛk

]}
s.t. tr (Λk) ≤ P

Λk � 0, and Uk is unitary. (11)

DenotingΛk = diag (λ1,k, . . . , λM,k), andUk = [u1,k, . . . ,uM,k],
where diag (·) denotes the diagonal operator, the optimization prob-
lem in (11) can be rewritten as

(
Uk,Λk

)
=arg max

Uk,Λk

M∑
i=1

γk (ui,k)λi,k

s.t.
M∑
i=1

λi,k ≤ P

λi,k ≥ 0, i = 1, . . . ,M (12)

where γk (ui,k) = u
H
i,kΓ

(
X

(k−1)
)
ui,k. Since {λi,k}

M

i=1 are non-
negative, then the objective function in (12) is maximized by as-
signing all the available power towards the subspace with maximum
γk (ui,k), and zero power towards the complement subspace. The
vector ui,k which maximizes γk (ui,k) is given by the eigenvector
corresponding to the maximum eigenvalue of Γ

(
X

(k−1)
)
. Denot-

ing this eigenvector by uk, the solution of the optimization problem
in (12) is given by

Λk = diag (P, 0, . . . , 0)

Uk = [uk,Vk] (13)

where Vk denotes a matrix of sizeM × (M − 1), whose columns
are orthonormal and perpendicular to uk. Based on (13), the optimal
transmit signal auto-correlation matrix is given by

RSk
= P · uku

H
k . (14)

In order to compute Γ
(
X

(k−1)
)
in (10), one needs to calculate

the posterior pdf fθ|X(k−1) , which can be sequentially updated as
follows

fθ|X(k−1) =
Fk−1 (θ)

f
X(k−1)

, k = 2, 3, . . . (15)

where

Fk−1 (θ) = Fk−2 (θ) · fXk−1|X
(k−2),θ (16)
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and

F0 (θ) = fθ, f
X1|X

(0),θ = fX1|θ (17)

where
(
Xk | X(k−1), θ

)
∼ N c

(
H (θ)Sk

(
X

(k−1)
)
,R
)
. The

denominator in (15) is a normalization factor, which only scales the
matrix Γ

(
X

(k−1)
)
. Accordingly, for calculation of uk, one can

ignore this normalization factor, which scales only the eigenvalues
of Γ

(
X

(k−1)
)
. Correspondingly, in the optimization problem, one

can compute

Γ̃

(
X

(k−1)
)
= Γ

(
X

(k−1)
)
f
X(k−1)

=

∫
Θ

Ḣ
H (θ)R−1

Ḣ (θ)Fk−1 (θ) dθ (18)

instead of Γ
(
X

(k−1)
)
, where Θ is the parameter space.

In summary, the steps of the proposed sequential algorithm are
described in Algorithm 1.

Algorithm 1
Initialization: F0 = fθ
for k = 1,2,... do
1. Compute Fk−1 (θ) for a predefined grid of θ using (16).
2. Compute Γ̃

(
X

(k−1)
)
using (18).

3. Pick the eigenvector corresponding to the maximum eigen-
value of Γ̃

(
X

(k−1)
)
, uk.

4. ConstructRSk
according to (14).

end for

4. NUMERICAL RESULTS

An example of the model used in (1) is the mono-static MIMO radar
with NR receiving and NT transmitting antennas. In this case, the
sequential observation model is given by [13]

Xk = α · aR (θ)aT
T (θ)Sk +Nk (19)

where θ is the target direction, aR (θ) ∈ C
NR×1,aT (θ) ∈ C

NT×1

are the steering vectors for the receiving and transmitting arrays, re-
spectively, and α is the complex amplitude. We assume that the
receive and transmit arrays are uniform, linear and that we choose
the reference point for the arrays such that aH

R ȧR = 0, aH
T ȧT = 0,

where ȧR and ȧT denote the derivatives of aR and aT , respectively,
which means that the transmit and receive arrays share the same ref-
erence point. Also, we assume thatR = σ2

INR
, where INR

denotes
an identity matrix of size NR. In practice, α is usually unknown.
However, for simplicity of the demonstration of the main idea, in
this paper we assume that it is known. According to (14), in or-
der to find the optimal sequential transmit auto-correlation matrix,
we need to calculate the eigenvector corresponding to the maximum
eigenvalue of Γ

(
X

(k−1)
)
. For the model given in (19), and under

the assumptions we made above, Γ
(
X

(k−1)
)
is given by:

Γ

(
X

(k−1)
)
=

= |α|2 E
[
‖ȧR‖

2
(
aTa

H
T

)∗
+ ‖aR‖

2
(
ȧT ȧ

H
T

)∗ ∣∣∣ X(k−1)
]
.

(20)

This result coincides with [1, 2] in the case of deterministic known
θ, where fθ|X(k−1) is given by a delta function at the true angle.

In the simulations, both the transmit and receive arrays are as-
sumed to be uniform and linear with reference point chosen to be
at the center of the arrays. We define the array signal-to-noise ra-
tio (ASNR) as ASNR �

= |α|2 PNR/σ
2, where P denotes the total

transmitted power. In the simulations we use a uniform a-priori dis-
tribution i.e. θ ∼ U

(
−π

2
+ ε, π

2
− ε
)
, where ε = 0.1 rad . Notice

that the BCRB does not exist for uniform prior distribution since
the regularity conditions are not satisfied. Accordingly, we assume
that IP is constant over

(
−π

2
+ ε, π

2
− ε
)
, which is an artificial, but

reasonable assumption.
Fig. 1 illustrates the process of waveform adaptation by the pro-

posed algorithm for various pulse indices, in which the target direc-
tion is fixed to θ = 30◦. The first and third rows in the figure show
the posterior pdf, while the second and fourth rows show the beam-
pattern defined as p (θ) = a

H
T (θ)R∗

Sk
aT (θ). In the simulations,

we use NT = 7, NR = 9 antennas, with half wavelength inter-
element spacing for both transmit and receive arrays, and the target
has a unit complex amplitude |α| = 1. We use ASNR of −6 dB.
It can be seen that as the iteration step increases, the beampattern
peak location is closer to the target direction similar to regular sum
beam, as expected. Respectively, the spread in the posterior pdf’s
decreases, which means better estimation performance of θ.

Fig. 2 shows the root mean-square-error (RMSE) for esti-
mation of θ as a function of the pulse index using the opti-
mized auto-correlation matrix and uncorrelated waveforms, i.e.
RSk

= (P/NT ) INT
for each k. The same array configuration and

signal wavelength as in the previous example were considered. We
use 500 Monte Carlo trials with independent noise and target direc-
tion randomization. We use ASNR of −12 dB. In order to estimate
the unknown parameter we used the minimum mean-square-error
(MMSE) estimator. It can be seen that by using the sequential tech-
nique, the estimation performance are significantly better compared
to using identical and orthonormal waveforms without optimization.

5. CONCLUSION

In this paper, we proposed a new technique for optimal adaptive se-
quential waveform optimization. Instead of transmission of identical
waveforms, in the proposed technique, the waveform is adjusted at
each step, in order to minimize the BCRB for system parameter es-
timation with respect to the transmit/input waveform. The proposed
technique was tested via simulations for adaptive spatial transmit
waveform design in the presence of a single target with a very weak
ASNR. The simulations show that the proposed technique enables
a significantly higher rate of reduction in the RMSE, compared to
identical orthonormal waveform transmission.
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Fig. 1. Posterior pdf’s (first and third rows) and optimal transmit
beampatterns (second and fourth rows) against θ for various pulse
steps, with θ = 30◦ and ASNR = -6 dB.
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