
COLOCATED MIMO RADAR TRANSMIT BEAMFORMING USING ORTHOGONAL
WAVEFORMS

Guang Hua, Saman S. Abeysekera

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

ABSTRACT

Multiple-input-multiple-output (MIMO) radar transmit beam-

forming mainly relies on designing transmitted signals with

an appropriate covariance matrix. The signals can be de-

signed using a two-step method which first optimizes the co-

variance matrix and then searches for the signals accordingly.

A more efficient way is to synthesize transmitted signals by

designing a weight matrix given a set of orthogonal wave-

forms, which makes use of both MIMO waveform diversity

and phased-array transmit gain. In this paper, we propose

a method to design the transmit beampattern by solving a

semidefinite programming (SDP) problem. Then the eigen-

decomposition of the optimal covariance matrix yields the

weight matrix. Therefore it is called the SDP-EIG method.

As a result, the overall transmitted waveforms are obtained

more simply and efficiently, and the number of orthogonal

signals required to form a desired beam reaches its minimum.

Index Terms— MIMO Radar, transmit beamforming,

transmit energy focusing, transmitted signal synthesis.

1. INTRODUCTION

Multiple-input-multiple-output (MIMO) radar systems have

been intensively studied in the recent decade. Compared to

conventional phased-array radars, MIMO radars with orthog-

onal transmitted waveforms enjoys the advantage of wave-

form diversity but has drawbacks in terms of signal-to-noise

ratio (SNR) loss [1]. To both preserve the waveform diversity

benefits and enjoy the advantages of phased-array radar, new

configurations of MIMO radar transmit antennas such as the

phased-MIMO radar and hybrid MIMO phased-array radar,

have been proposed in [2], [3], [4]. The signal strategies dis-

cussed in these works transmit orthogonal waveforms while

each of them is transmitted from multiple antennas (subar-

rays) to form a phased-array beam.

Besides the techniques and algorithms developed based

on the variations of array subaperturing and signal choices,

MIMO radar transmit beampforming, also known as MIMO

radar transmit energy focusing, has received much attention

recently [5], [6]. Such an idea of array processing at the trans-

mit mode aims to improve the direction-of-arrival (DOA) esti-

mation by focusing the transmit beampattern to a pre-assigned

angle section within which multiple targets are assumed to

exist. As a result, the transmit beampattern will not be flat as

conventional MIMO radar. With an appropriate design, the

performance can be improved compared to the shape-fixed

transmit beampattern of phased-array radar.

The covariance matrix of transmitted signals is a key pa-

rameter deciding the array’s spatial response. In this paper we

do not follow the popular notion of MIMO radar waveforms’

orthogonality. Thus the covariance matrix can be arbitrary

chosen between identity matrix and all one matrix, which has

been done in [5]. The idea in [5] is a two-step optimization

problem. First, the covariance matrix is optimized such that

the squared error between the transmit beampattern and the

desired one is minimized. Second, the signals are optimized

using the obtained covariance matrix. in [6], a new trans-

mitted signal model is proposed, in which each orthogonal

waveform is weighted and transmitted from the array instead

of a single antenna, respectively. In other words, each an-

tenna transmit a linear combination of all the orthogonal sig-

nals. This scenario introduces a weight matrix, and can be

referred to as an electronic hybrid MIMO phased-array radar

compared to its physical counterparts proposed in [2], [3], [4].

In this paper, we formulate a semidefinite programming

(SDP) problem inspired by the work in [5] and [6], and find

the optimal weight matrix via eigen-decomposition. Thus the

method is regarded as SDP-EIG method. The waveform de-

sign problem boils down to the optimization of the weight

matrix. Compared to [5], the optimization of waveforms is

removed, which simplifies the problem. Compared to [6], we

formulate an alternative optimization problem which can be

efficiently solved using standard optimization tools. Simula-

tions demonstrate the advantages of the proposed method, and

reveal the relation between the transmit beampattern design

for MIMO radar and that for the conventional phased-array.

The superiority of the former is addressed. Both ideal and

real (practical) signals are used in the simulations.

2. TRANSMIT BEAMFORMING SIGNAL MODEL

Consider a MIMO radar system with colocated NT transmit

antennas and NR receive antennas. The K orthogonal unity
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energy signals are stacked in an N×K matrix S , (K ≤ NT):

S =
[
s0 s1 · · · sK−1

]
, (1)

where N is the length of the signals. Suppose the targets are

from far field and the transmit and receive array are uniform

linear arrays (ULA) sharing the same target angle with in-

ter element spacing of half of the carrier wavelength, and the

angle is counted counterclockwise with the broadside corre-

sponding to 90◦. The transmit and receive steering vector are:

eT (θ) =
[
1 e−jπ cos θ · · · e−jπ(NT−1) cos θ

]T
, (2)

eR (θ) =
[
1 e−jπ cos θ · · · e−jπ(NR−1) cos θ

]T
, (3)

where {·}T is the transpose operator. The transmitted signal

is a linear combination of the orthogonal signals, which is

modeled as an NT ×N matrix ST:

ST =
K−1∑
k=0

cks
T
k = CST , (4)

where C is the NT × K weight matrix whose kth column is

ck (k ∈ [0, K − 1]). The transmitted signal energy is:

ET = tr
{
STS

H
T

}
= tr

{
CCH

}
, (5)

where {·}H is the transpose conjugate operator. To make the

total transmit energy equal to that of the conventional MIMO

radar, we set tr
{
CCH

}
= NT. Note that this constraint is

a relaxed version of ‖ck‖2 = 1 in [6]. This relaxation of-

fers more flexibility of designing C while preserving the en-

ergy constraint. The transmit beampattern PT (θ) and overall

beampattern after matched filtering, PMF (θ), are:

PT (θ) = eHT (θ)STS
H
T eT (θ)

= eHT (θ)CCHeT (θ) , (6)

PMF (θ) = tr
{
SRŜ

H
R

}

= tr
{
eR (θ0) e

T
T (θ0)CCHe∗T (θ) e

H
R (θ)

}
, (7)

where {·}∗ is the conjugate operator and θ0 is the target an-

gle (a single target is present). SR is the NR × N matrix

of received signals. Note that both the transmit and overall

beampattern are related to C. Hence, by using the same set

of orthogonal signals, we can modify the beampatterns by ap-

propriately choosing the weight matrix C, which cannot be

fulfilled in conventional MIMO radar scenario.

3. PROBLEM FORMULATION

Suppose we want the energy of transmit beam uniformly fo-

cusing within a range sector denoted as Θ, according to which

the desired transmit beampattern, denoted as Pd(θ), is pre-

assigned. The transmit beamforming problem is interpreted

as the convex optimization problem below:

min
C

∑
θ

∣∣∣Pd (θ)− eHT (θ)CCHeT (θ)
∣∣∣
2

s.t. tr
{
CCH

}
= NT. (8)

Note that (8) is a 4th order nonlinear problem, in which C
is difficult to be solved. Instead of directly solving C, we

propose to solve RC first, where RC = CCH , i.e.,

min
RC

∑
θ

∣∣Pd (θ)− eHT (θ)RCeT (θ)
∣∣2

s.t. tr {RC} = NT,

RC � 0, (9)

where � is matrix inequality operator (if RC � 0, then RC

is positive semidefinite). Note that (9) is not equivalent to (8).

In other words, C may not necessarily be the unique solution

given RC. It is worth noting that (9) is mathematically equiv-

alent to the optimization problem formulated in [5]. However,

[5] aims to optimize the covariance matrix of transmitted sig-

nals followed by another optimization problem for waveform

design, whereas here we already have the signals at hand and

(9) is to optimize the covariance form of the weight matrix.

In [5], barrier method incorporating Newton’s method is pro-

posed to iteratively calculate the solution. The problem can

be more efficiently solved using CVX SDP tools (see [7]).

An intuitive way to generate C given RC is based on the

eigen-decomposition of RC [8]. In fact, any C with NT rows

and arbitrary columns that satisfies CCH = RC forms the

same transmit beampattern. Thus,

C � U
√
Λ, (10)

where U and Λ are the matrix of eigenvectors and the diago-

nal matrix of the eigenvalues of RC, respectively. Note that

the number of non-zero columns in C defined in (10)is deter-

mined by the the rank of RC. This property is important as it

implies the minimal number of orthogonal signals required to

form the desired transmit beam, i.e,

Kmin = rank (RC) . (11)

Assume rank (RC) = R < NT, by discarding the NT − R
zero columns of

√
Λ, (10) is modified to yield the optimal

weight matrix C̃ of dimension NT ×R:

C̃ � U
√
Λ̃. (12)

Since the portion discarded are all zeros, the total transmit

beam energy is preserved. As a result, By designing an ap-

propriate weight matrix C̃, which is embodied in designing an

appropriate covariance matrix RC, we can achieve a desired

transmit beampattern using the least orthogonal waveforms.

This method is regarded as the SDP-EIG method. Simulations

will demonstrate the above points in the following section.
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4. SIMULATION RESULTS

We first assume K = NT and solve the SDP problem. Then

Kmin is obtained by discarding the columns of
√
Λ̃ cor-

responding to zeros eigenvalues. We also implement the

discrete prolate spheroidal sequence (DPSS) based method

proposed in [6] for comparison. Then we study the perfor-

mance under real situation where the orthogonal waveforms

designed in [9] for enhanced MIMO radar delay-Doppler es-

timation are considered. The parameters are set as follows:

NT = 10, a wide and a narrow angle range section are used

respectively for the comparison under different energy focus-

ing objectives, Θ1 ∈ [65◦, 115◦], Θ2 ∈ [85◦, 95◦]. The

angular resolution is 0.5◦. Pd(θ) is designed as a rectangular

function whose value outside Θ is 1. The value imposed

within Θ, denoted as P0 (P0 � 1, P0 = 102 corresponds

to 20 dB), highly affects the slope of transition band of the

spatial frequency response. A higher value of P0 pulls the

transmit main beam edge down faster than a lower value

does. Hence we choose P0 lower for Θ1 and higher for Θ2,

accordingly.
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Fig. 1. Beampatterns using Θ1, P0 = 20.

The transmit beampattern comparison between SDP-EIG

method and DPSS based method for the wide mainbeam case

is shown in Fig.1, where P0 = 20 (13 dB), rank (RC) = 4,

and the eigenvalues are 1.901, 2.667, 2.702, and 2.730. The

DPSS method [6] forms a matrix A by summing up the the

outer product of eT (θ) at each angle. Then the eigenvectors

corresponding to several largest eigenvalues form the weight

matrix. In this example, the nonzero eigenvalues of A are

15.91, 93.73, 200.4, 229.7, 234.2, and 235.0, and the eigen-

values chosen are the largest 4 of them. The two methods

have nearly identical mainbeams, where the normalized en-

ergy within the section of interest is strictly lower bounded by

−3 dB. Both the mainbeam peak areas are nearly flat. Note

that the SDP-EIG pattern is better than the DPSS one in terms

of the reduction of sidelobe peaks.
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Fig. 2. Beampatterns using Θ2, P0 = 102.
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Fig. 3. SDP-EIG Beampatterns using Θ2 and different P0.

A more strict situation for designing a narrow focusing

section is demonstrated in Fig.2, where P0 = 102 (20 dB).

In this case, rank (RC) = 1 and the only eigenvalue is 10,

which is equal to the energy constraint. The eigenvalues of A
is 1.612, 37.58 and 170.8, and the eigenvectors corresponding

to the largest two are chosen. Note that the SDP-EIG method

always enjoys the advantage of sidelobe reduction compared

to DPSS method. This is because in DPSS method there is no

desired pattern Pd(θ) to be fitted. Note that the peak of DPSS

within the section of interest is flat whereas in SDP-EIG it is

not, but the −3 dB bound property is still preserved. Thus

if the flat energy peak needs to be strictly preserved (better

environment), we propose to use DPSS weight matrix. if the

system suffers more from noise and interference, we propose

to use SDP-EIG weight matrix.

Another important point to address is that rank (RC) = 1
implies the system boils down to a phased-array structure,

whereas the phase shift between each antenna may not be a

constant like the typical phased-array radar. We further ob-
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Fig. 4. SDP-EIG Beampattern using Θ1 and Real Signals.

serve in Fig.3 that in a design of P0 approaching infinity, the

beampattern approaches that of the phased-array, or slightly

better, still in terms of sidelobe reduction. As the SDP-EIG

method finally results in a phased-array radar, we can con-

clude that if we want to form a narrow beam (say 10◦ or less)

towards an angle section of interest, the simplest and efficient

way is still using phased-array radar. The advantage of SDP-

EIG is reflected when we want flexibly and efficiently design

a wider transmit beampattern within which the mainlobe cov-

ers all the targets that are likely to exist.

Finally, we study the performance considering the real

(practical) signals generated in [9]. The 4 Costas array coding

(CAC) orthogonal waveforms, with coding dimension M =
17, have a MIMO ambiguity function sidelobe peak upper

bounded by −10 dB, and all sidelobes are widely distributed

in delay-Doppler plain. Fig.4, where P0 = 30, shows that al-

though the peak platform is degraded due to the imperfection

of the covariance matrix of the orthogonal signals, it still lies

above −3 dB level within the section of interest. Thus the sig-

nals designed for enhanced MIMO radar delay-Doppler reso-

lution are also applicable for MIMO transmit beamforming.

5. CONCLUSION AND DISCUSSION

Inspired by the signal model in [6] and the problem formu-

lation in [5], we propose the SDP-EIG method to design

transmit beampattern for colocated MIMO radars. Instead

of directly solving the weight matrix C, we propose to solve

RC first and then find C̃ based on eigen-decomposition of

RC and column reduction manipulations. We analyze the

performance of SDP-EIG method in relation with the DPSS

method and conventional phased-array. Simulation shows

that to design a narrow transmit beam, SDP-EIG boils down

to a phased-array system, and there is a tradeoff between flat

peak requirement and sidelobe reduction issues. The advan-

tage of our proposed method is reflected from the problem of

designing a wide transmit beam, where both the waveform

diversity and the phased-array beam property can be effi-

ciently combined. The SDP-EIG and the DPSS offer a nearly

identical flat mainbeam, and the SDP-EIG has substantially

lower sidelobes, which could be considered as a sidelobe free

beampattern. The simulation using real (practical) signals

further verifies the performance our proposed method.

Note that the desired beampattern Pd(θ) strongly affects

the optimization performance. In this paper, we only use a

rectangular function to specify it. It is worth to think about

designing a more appropriate Pd(θ) by incorporating some

features of eHT (θ)RCeT (θ) which may further reduce the

squared error. In addition, it is intuitive to consider the trans-

mit beamforming issues for a phased-array radar using the

same weighting strategy, and analyze its performance in rela-

tion with the issues discussed in this work.
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