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ABSTRACT

This paper considers a parametric approach for adaptive multichan-
nel signal detection, where the disturbance is modeled by a multi-
channel auto-regressive (AR) process. Motivated by the fact that a
symmetric antenna geometry usually yields a persymmetric structure
on the covariance matrix of disturbance, a new persymmetric AR
(PAR) modeling for the disturbance is proposed and, accordingly,
a persymmetric parametric adaptive matched filter (Per-PAMF) is
developed. The developed Per-PAMF, while allowing a simple im-
plementation like the traditional PAMF, extends the PAMF by de-
veloping the maximum likelihood (ML) estimation of unknown nui-
sance (disturbance-related) parameters under the persymmetric con-
straint. Numerical results show that the Per-PAMF provides signifi-
cantly better detection performance than the conventional PAMF and
other non-parametric detectors when the number of training signals
is limited.

Index Terms— Multichannel signal processing, adaptive matched
filter, maximum likelihood estimation, persymmetry, multichannel
auto-regressive process.

1. INTRODUCTION

Multichannel adaptive signal detection against strong spatially and
temporally colored disturbances has been encountered in many
applications, e.g., wireless communications, hyperspectral imag-
ing, and medical imaging. Traditional techniques are limited for
practical applications due to their excessive training requirement
and high computational complexity. For example, the covariance-
matrix-based detectors, e.g., Kelly’s generalized likelihood ratio test
(GLRT) [1], the adaptive matched filter (AMF) [2], and the adaptive
coherence estimator (ACE) [3], need K ≥ JN training signals to
ensure a full-rank estimate of the disturbance covariance matrix and
have to invert the JN × JN covariance matrix, where J denotes
the number of antennas and N denotes the number of pulses.

Among other techniques, a class of parametric detectors pro-
vide an efficient way to simultaneously mitigate the training require-
ment and reduce the computational complexity [4–7] (and reference
therein). By modeling the disturbance as a multichannel auto-
regressive (AR) process, the parametric detectors decompose the
jointly spatio-temporal whitening of the covariance-matrix-based
detectors into successive temporal whitening and spatial whiten-
ing. As a well-known parametric detector, the parametric AMF
(PAMF) is simple to implement and has been verified to provide
better performance with reduced computational complexity than
the non-parametric counterpart, i.e., the AMF, especially when
K � JN .

In addition to the assumption of the multichannel AR process,
the aim of this paper is to further improve the traditional PAMF in

terms of training-signal efficiency by exploiting the structural infor-
mation about the disturbance covariance matrix, i.e., the persymme-
try. In [8], Nitzberg shows that the efficiency of usage of training sig-
nals is improved by up to a factor of two by utilizing persymmetry.
Other adaptive detection schemes explicitly taking into account the
persymmetry have been proposed in [9] and, more recently, [10–13].
The results in the above references show that exploiting the persym-
metric property improves the detection performance in terms of the
training efficiency and enhances the robustness in terms of the con-
stant false alarm rate (CFAR).

In this paper, we take advantages of both the multichannel-AR-
based PAMF and the underlying persymmetry to propose a persym-
metric PAMF (Per-PAMF). The Per-PAMF is developed in a two-
step procedure. In detail, a non-adaptive parametric matched filter
(PMF) is first introduced by assuming the knowledge of the nui-
sance parameters and, then, the Per-PAMF is developed from the
PMF by replacing the nuisance parameters by their maximum like-
lihood (ML) estimates from training signals under the persymmetric
constraint. The Per-PAMF is numerically compared to the conven-
tional PAMF and the results show that the Per-PAMF has slightly
better performance than the PAMF when the number of training sig-
nals is sufficient, while it significantly outperforms the the PAMF in
cases with extremely limited training signals.

The remainder of the paper is organized as follows. Section 2
contains the signal model and introduces the persymmetric AR mod-
eling for the disturbance. The Per-PAMF detector is derived in Sec-
tion 3. Numerical results with two distinct datasets are provided in
Section 4. The conclusion is finally drawn in Section 5.

2. SIGNAL MODEL

The problem of interest is to decide one of the following two hy-
potheses is true:

H0 : x0 = d0,

H1 : x0 = αs + d0, (1)

where x0 is the JN×1 test signal, s is the known space-time steering
vector which is a Kronecker product between the space and tempo-
ral steering vectors, i.e.,s = sd ⊗ ss, α is an unknown complex-
valued amplitude, and d0 is the disturbance which is assumed to be
complex Gaussian vector with zero-mean and unknown covariance
matrix R, i.e., d0 ∼ CN (0,R). In addition, there are K target-
free independent and identically distributed (i.i.d.) training signals
xk = dk, k = 1, · · · , K with distribution dk ∼ CN (0,R), which
is also independent of the test signal. Moreover, the disturbance in
both test and training signals can be modeled as a multichannel AR
process [4]. Specifically, let dk(n) ∈ C

J×1, n = 0, 1, . . . , N − 1,
denote the N non-overlapping temporal segments of dk, i.e., dk �
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[
dT

k (0),dT
k (1), · · · ,dT

k (N − 1)
]T

. The multichannel AR model-
ing is mathematically described by

dk(n) = −
P∑

p=1

A
H(p)dk(n − p) + εk(n), (2)

where εk(n) ∼ CN (0,Q) is the J-channel temporally white but
spatially colored Gaussian driving noise with Q denoting the un-
known J × J spatial covariance matrix, and {A(p)}P

p=1 denote the
unknown J × J AR coefficient matrices.

In this paper, we consider a case frequently encountered in prac-
tice, where the systems use a symmetric antenna configuration (sym-
metrical with respect to its phase center) and transmit a set of pulses
of equal duration [8]. For example, the widely used uniform linear
array with a constant pulse repetition frequency (PRF) is such a sys-
tem. The structured antenna array configurations and constant PRF
cause the spatio-temporal covariance matrix R to be persymmetric-
block-Toeplitz. To exploit this structure information of the covari-
ance matrix R, a new multichannel AR model by incorporating the
persymmetric property is introduced below; in addition to (2), we
impose two more assumptions (AS1 and AS2) about the covari-
ance matrix Q of the driving noise and the AR coefficient matrices
A(p), p = 1, · · · , P :

AS1 : Q = EQ
∗

E, (3)

where [·]∗ denotes the complex conjugate and E denotes the ex-
change matrix which is one at the anti-diagonal elements and zeros
otherwise, and

AS2 : A(p) = EA
∗(p)E. (4)

The covariance matrix of the above persymmetric AR (PAR) pro-
cess can be verified to be persymmetric-block-Toeplitz1 and, hence,
the PAR modeling (of (2), (3) and (4)) provides a parametric way
to approximate the disturbance with a persymmetric-block-Toeplitz
covariance matrix R.

3. PERSYMMETRIC PARAMETRIC ADAPTIVE
MATCHED FILTER

The Per-PAMF is developed in a two-step approach: 1) find the
GLRT when the nuisance parameters A and Q are assumed both
known; 2) then replace A and Q by their ML estimates from train-
ing signals xk, k = 1, · · · , K, under the persymmetric constraint.

3.1. PMF — the GLRT with Known A and Q

When A and Q are both known, the GLRT reduces to the nonadap-
tive PMF [7]

TPMF =

∣∣∣∣
N−1∑
n=P

s̃H (n)Q−1x̃0 (n)

∣∣∣∣
2

N−1∑
n=P

s̃H (n)Q−1s̃ (n)

(5)

where s̃ and x̃0 are, respectively, the temporally whitened steering
vector and test signal obtained with the true temporal correlation

1The proof is skipped here due to the page limit.

matrices A(p), p = 1, · · · , P ,

s̃ (n) = s (n) +
P∑

p=1

A
H (p)s (n − p) , (6)

x̃0 (n) = x0 (n) +
P∑

p=1

A
H (p)x0 (n − p) . (7)

In the case of unknown A and Q, the above PMF cannot be imple-
mented and, therefore, we need to replace A and Q with their ML
estimates under the persymmetric constraints of (3) and (4).

3.2. Persymmetric ML Estimate of Q

The ML estimates of A and Q under the persymmetric constraint
(denoted as the PML estimates) are obtained from training signals
only. According to the signal model, the joint likelihood function of
training signals xk, k = 1, · · · , K, can be written as

p (x1, · · · ,xK ;A,Q) =

[
1

πJ |Q|
e− tr(Q−1Γ0)

]K(N−P )

,

where

K(N − P )Γ0 =

K∑
k=1

N−1∑
n=P

εk (n) ε
H
k (n), (8)

with definitions

εk (n) = xk (n) +

P∑
p=1

A
H (p)xk (n − p) . (9)

Alternatively, K(N − P )Γ0 can be rewritten as

K(N − P )Γ0 = R̂xx + A
H
R̂yx + R̂

H
yxA + A

H
R̂yyA, (10)

where

A
Δ
=

[
A

H (1) ,AH (2) , · · · ,AH (P )
]H

, (11)

R̂xx =

K∑
k=1

N−1∑
n=P

xk (n)xH
k (n), (12)

R̂yy =
K∑

k=1

N−1∑
n=P

yk (n)yH
k (n), (13)

R̂yx =
K∑

k=1

N−1∑
n=P

yk (n)xH
k (n), (14)

and yk(n) is a regression vector of xk(n):

yk (n)
Δ
=

[
x

T
k (n − 1) ,xT

k (n − 2) , · · · ,xT
k (n − P )

]T

. (15)

By exploiting the persymmetric property of Q, i.e., (3), we have

tr
(
Q

−1
Γ0

)
= tr

(
Q

−1 Γ0 + EΓ∗

0E

2

)
, (16)

which leads to ln p ∝ − ln |Q|− 1
2

tr
(
Q−1 [Γ0 + EΓ∗

0E]
)
. Taking

the derivative of ln p with respect to Q and equating the results to
zero produces the ML estimates of Q as

Q̂PML =
1

2
(Γ0 + EΓ

∗

0E) . (17)

As a result, ln p ∝ − ln
∣∣ 1
2

(Γ0 + EΓ∗

0E)
∣∣ . Therefore, the persym-

metric ML estimate of A is equivalent to minimizing the determinant
of K(N − P ) (Γ0 + EΓ∗

0E) /2.
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3.3. Persymmetric ML Estimate of A

Note that the new variable A of (11) stacks A(p) in a column wise.
From (4), A has the following property

A = EBA
∗

E, (18)

where EB = IP ⊗ E with IP denoting a P × P identity matrix.
From (10), K(N − P )(Γ0 + EΓ∗

0E) can be expressed as

K(N − P )(Γ0 + EΓ
∗

0E)
(a)
=

[
R̂xx + ER̂

∗

xxE
]

+
[
A

H
R̂yx + E(AH

EBEBR̂yx)∗E
]

+
[
R̂

H
yxA + E(R̂H

yxEBEBA)∗E
]

+
[
A

H
R̂yyA + E(AH

EBEBR̂yyEBEBA)∗E
]

(b)
=

[
R̂xx + ER̂

∗

xxE
]

+ A
H

[
R̂yx + EBR̂

∗

yxE
]

+
[
R̂

H
yx + E(R̂H

yx)∗EB

]
A + A

H
[
R̂yy + EBR̂

∗

yyEB

]
A,

where (a) has used the fact that EBEB = IJP , and (b) is due to
(18) and EH

B = EB . Denote

R̂xx,P =
(
R̂xx + ER̂

∗

xxE
)

/2, (19)

R̂yx,P =
(
R̂yx + EBR̂

∗

yxE
)

/2, (20)

R̂yy,P =
(
R̂yy + EBR̂

∗

yyEB

)
/2. (21)

As a result, K(N − P )(Γ0 + EΓ∗

0E)/2 can be rewritten as

K(N − P )(Γ0 + EΓ
∗

0E)/2

=R̂xx,P + A
H
R̂yx,P + R̂

H
yx,P A + A

H
R̂yy,P A

=
(
A

H + R̂
H
yx,P R̂

−1
yy,P

)
R̂yy,P

(
A

H + R̂
H
yx,P R̂

−1
yy,P

)H

+
(
R̂xx,P − R̂

H
yx,P R̂

−1
yy,P R̂yx,P

)
. (22)

Since R̂yy,P is nonnegative definite and the remaining term does not
depend on A, it follows that

(Γ0 + EΓ
∗

0E) /2 ≥ (Γ0 + EΓ
∗

0E) /2
∣∣∣A=−R̂H

yx,P
R̂

−1

yy,P

=
R̂xx,P − R̂H

yx,P R̂−1
yy,P R̂yx,P

K(N − P )
, (23)

which implies that

ÂPML = −R̂
−1
yy,P R̂yx,P , (24)

and the persymmetric ML estimate of Q of (17) reduces to

Q̂PML =
R̂xx,P − R̂H

yx,P R̂−1
yy,P R̂yx,P

K(N − P )
. (25)

Interestingly, the persymmetric ML estimates of A and Q at (24)
and (25) turn out to be, respectively, a persymmetric version of the
standard ML estimates i.e.,

ÂML = −R̂
−1
yy R̂yx, Q̂ML =

R̂xx − R̂H
yxR̂

−1
yy R̂yx

K(N − P )
. (26)

3.4. Per-PAMF

By replacing A and Q with the persymmetric ML estimates of A

and Q in (5), we obtained the Per-PAMF as

TPer-PAMF =

∣∣∣∣
N−1∑
n=P

ˆ̃s
H

P (n) Q̂−1
PML

ˆ̃x0,P (n)

∣∣∣∣
2

N−1∑
n=P

ˆ̃s
H

P (n) Q̂−1
PML

ˆ̃sP (n)

H1

≷
H0

γPer-PAMF (27)

where γPer-PAMF is a threshold corresponding to a preset probability
of false alarm, and ˆ̃sP and ˆ̃x0,P are obtained from (6) and (7), re-
spectively, with the persymmetric ML estimate of A in (24), and
Q̂PML is given by (25).

From (27), it is seen that the Per-PAMF inherits the reduced
computational complexity of the conventional PAMF by perform-
ing successively a temporal whitening following by a spatial whiten-
ing, in contrast to the computationally intensive joint spatio-temporal
whitening of the covariance matrix based approach (e.g., the AMF
[2]). On the other hand, it further improves robustness of the param-
eter estimation by exploiting the underlying structure of the distur-
bance covariance matrix via the persymmetric ML estimates of the
AR coefficient matrices A and the spatial covariance matrix Q.

4. NUMERICAL EVALUATION

In this section, simulation results are provided to demonstrate the ef-
ficiency of the proposed Per-PAMF in the training-limited case, e.g.,
K � JN . The disturbance signal dk is generated as a multichan-
nel second-order PAR process (P = 2) with a AR coefficient A and
a spatial covariance matrix Q satisfying (4) and (3). The signal-to-
interference-plus-noise ratio (SINR) is defined as

SINR = |α|2sH
R

−1
s, (28)

where R is the corresponding covariance matrix of the PAR-
modeled disturbance. The steering vector s is generated with a
normalized spatial frequency fs = 0.2 and a normalized Doppler
frequency is fd = 0.2, respectively. The simulated performance is
obtained by using at least 10000 Monte Carlo trials for the prob-
ability of false alarm Pf = 0.01. Performance comparisons are
made among the non-parametric AMF [2], the non-parametric per-
symmetric AMF (Per-AMF) [13], the conventional PAMF [4], and
the clairvoyant matched filter (MF) [2]. Particularly, the simulated
scenario uses J = 5 antenna elements and N = 11 pulses, while
the number of training signals are, respectively, K = 2 and K = 8.

Fig. 1 shows the probability of detection versus the SINR with
comparably sufficient training signals, e.g. K = 8. In this case, the
performance gain of the Per-PAMF over the conventional PAMF is
marginal since both parametric detectors have enough training sig-
nals to obtain good estimates of the unknown parameters. Mean-
while, both parametric detectors, i.e., the PAMF and Per-PAMF with
K = 8 training signals, show better detection performance than the
non-parametric covariance matrix based AMF and Per-AMF with
K = 2JN = 110 training signals.

In Fig. 2, the number of training signals is reduced to K = 2.
As shown in Fig. 2, the performance gap between the Per-PAMF and
the PAMF increases to about 5 dB when Pd = 0.8, as the traditional
PAMF gives much worse performance with K = 2 training signals.
In other words, with only K = 2 training signals, the conventional
PAMF cannot obtain reliable estimates of unknown parameters, e.g.,
A and Q, which leads to performance degradation, while the Per-
PAMF has better efficiency of using training signals for unknown
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Fig. 1. Probability of detection versus SINR for K = 8 when J = 5,
N = 11, P = 2, and Pf = 0.01.

parameter estimation and thus maintains its performance even with
only K = 2 training signals. The Per-PAMF with K = 2 training
signals is also better than its non-parametric Per-AMF with K = 55
training signals and much better than the non-parametric AMF with
K = 55 training signals which fails to detect the target signal.

5. CONCLUSION

This paper extends the conventional PAMF by exploiting the struc-
ture properties of the disturbance covariance matrix. The developed
Per-PAMF shares the same detection statistics as the conventional
PAMF but utilizes the structure information through the estimation
of the unknown AR coefficient matrices A and spatial covariance
matrix Q. Numerical results have verified that exploiting the per-
symmetric information allows a reduction in the number of training
signals for the detection and, hence, yields better detection perfor-
mance than the conventional PAMF as well as the covariance matrix
based detectors when training signals are limited.
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