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ABSTRACT
This work presents a novel full generalized likelihood ratio

test (GLRT) for signal detection in a sensor array environ-

ment. The multiple hypothesis test approach is well known

to have excellent detection performance among several pop-

ular methods. Existing multiple test procedures consider the

relation between two adjacent models. When the number of

signals or the assumed number of signals is large, it tends to

overestimate the number of signals. The proposed full GLRT

procedure overcomes this disadvantage by employing com-

plete information between candidate models and leads to gain

in test power. A further advantage is that a confidence inter-

val for the true number of signals can be constructed based on

the outcome of the GLRT procedure. Numerical results show

that the full GLRT procedure improves detection performance

significantly in comparison with existing multiple test based

approaches in challenging scenarios.

Index Terms— array processing, full generalized likeli-

hood ratio test, signal detection, model order selection, confi-

dence interval

1. INTRODUCTION

This work discusses signal detection using a full generalized

likelihood ratio test. Estimating the number of signals embed-

ded in noisy observations is a key issue in array processing,

harmonic retrieval, wireless communication and many other

applications. It has attracted lots of research interest over last

decades [2] [9] [10]. In early works [2] [7], a multiple testing

procedure was suggested to determine the number of signals

sequentially. In more recent works [3] [4] along this line,

the false discovery rate (FDR) was introduced to improve the

test power and probability of correct detection. Compared

to another popular information theoretic criterion based ap-

proach [9] [10], the multiple testing procedure has better per-

formance under critical conditions such as low SNR and small

samples.

A common feature of the afore mentioned multiple testing

procedures is that each test considers only adjacent models

in the hierarchy of candidate models and detect signals in a

stepwise manner. In this paper, we suggest a full generalized

likelihood ratio test that exploit more information between

models and further improve detection performance. The full

GLRT was first proposed by Hosoya for model identification

[5] and was shown to be more favorable than the standard

χ2-test. Here, we adopt the idea of comparing the candidate

model with all models of higher order and construct a new

test procedure for signal detection. The proposed procedure

is not only more powerful than existing stepwise approaches,

it also provides means of constructing confidence interval for

the true number of signals.

In the following, we will give a brief description of data

model. Then the full GLRT procedure for signal detection is

developed in Section 3. Section 4 is devoted to derivation of

test statistics and p-values. Simulation results are presented

in Section 5. Finally, concluding remarks are given in Section

6.

2. PROBLEM FORMULATION

Consider an array of n sensors receiving m narrow band sig-

nals emitted by far-field sources located at θm =[ θ1,. . ., θm]T .

The array output x(t) ∈C
n×1 is expressed as

x(t) = Hm(θm)sm(t) + n(t), t = 1, . . . , T (1)

where the ith column of the array response matrix

Hm(θm) = [d(θ1) · · ·d(θi) · · ·d(θm)] (2)

d(θi) ∈C
n×1 is the steering vector associated with the signal

arriving from the direction θi. The signal waveform sm(t)=
[s1(t),. . ., sm(t)]T ∈ C

m×1 is considered as deterministic and

unknown. The noise n(t) ∈C
n×1 is independent, identically

complex normally distributed with zero mean and covariance

matrix σ2I , where σ2 is the unknown noise spectral param-

eter and I is an identity matrix of corresponding dimension.

Given the observations {x(t)}T
t=1, the problem of central in-

terest is to determine the number of signals, m.
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3. SIGNAL DETECTION USING A FULL
GENERALIZED LIKELIHOOD RATIO TEST

We formulate source detection as a model order selection

problem. Suppose M is the maximal number of signals.

The following hierarchical structure represents models corre-

sponding to increasing numbers of signals m = 0, · · · ,M :

M0 ⊂ M1 · · · ⊂ Mm · · · ⊂ MM , (3)

where M0 denotes the noise only case. Each model class Mi

is associated with the null hypothesis:

Hi : x(t) = Hi(θi)si(t) + n(t). (4)

To validate Mi (i < M), Hi is tested against all models of

higher orders, Hj , i < j ≤ M . If Hi is retained for one

of these tests, Mi becomes candidate for the best model. In

the sequential test, whether Mi remains as candidate model

solely depends on the outcome of testing against Mi+1. Ap-

parently, the proposed full test increases the probability for

Mi to be considered as candidate. In particular, when Mi is

the true model, the probability of correct detection becomes

larger. Finally, after the set of candidate models is deter-

mined, the model order is estimated by the one with the lowest

complexity.

Mathematically, this procedure can be described as fol-

lows. Let Tij and pij denote the test statistic and the cor-

responding p-value (observed significance value) when test-

ing Hi against Hj , respectively. By definition, the p-value is

computed as pij = 1 − PHi(Tij) where PHi(·) is the cumu-

lative distribution function under the null hypothesis Hi. Hi

is rejected if pij < α where α is a pre-specified significance

level. In the procedure described above, Hi is tested against

Hj , j = i + 1, . . . , M . It is considered as a candidate model

if Hi is not rejected in one of the tests. This implies that the

minimum p-value

pi = min{pij |j = i + 1, i + 2, . . . , M} (5)

must be equal to or larger than α for Mi to become a candi-

date model, i.e. pi ≥ α.

Let {Hi1 , Hi2 , · · · ,Hir} denote the retained hypotheses

where I = {i1, i2, · · · , ir} is a subset of {1, 2, · · · ,M}. The

number of signals (or model order) corresponds to the one

with the smallest index:

m̂ := min{i1, i2, · · · , ir}. (6)

As pointed out in [5], the above procedure also provides

means of constructing confidence interval of model order. In

other words, if i0 is the index corresponding to the true model

Mi0 , then

Pr{i0 ∈ I|i0} = 1 − α. (7)

The above property follows directly from the construction of

the procedure. It was shown for model identification problem

that the smallest index m̂ is a consistent estimator for i0 under

mild conditions on significance level α.

4. TEST STATISTICS

The test statistics for the proposed procedure are derived from

the generalized likelihood ratio principle. Let θ̂m denote the

ML estimate obtained from minimizing the negative concen-

trated likelihood function:

θ̂m = arg min
θm

tr[(I − P m(θm))Ĉx], (8)

where P (θm) represents the projection matrix onto the

subspace spanned by the columns of Hm(θm) and Ĉx =
1
T

∑T
t=1 x(t)x(t)H is the sample covariance matrix.

We apply the likelihood ratio (LR) principle to obtain the

test statistic Tij (i = 1, · · · , (M − 1), j = i + 1, · · · ,M):

Tij = log

(
tr[(I − P i(θ̂i))Ĉx]

tr[(I − P j(θ̂j))Ĉx]

)
(9)

= log
(

1 +
n1

n2
Fij

)
, (10)

Fij =
n2

n1

tr[(P j(θ̂j) − P i(θ̂i))Ĉx]

tr[(I − P j(θ̂j))Ĉx]
. (11)

When i = 1, we define P 0(·) = 0.

Since Tij is a monotonic increasing function of Fij , the test

can be equivalently conducted by using Fij . Under the null

hypothesis Hi, the statistic Fij is asymptotically Fn1,n2-

distributed. The degrees of freedom n1, n2 are given by

n1 = (2(j − i) + (ri+1 + · · · + rj)) T, (12)

n2 = (2n − 2j − (ri+1 + · · · + rj)) T, (13)

where ri = dim(θi) denote the number of the nonlinear pa-

rameters associated with the ith signal. This can be verified

by taking Taylor expansion around the true nonlinear param-

eters [7]. For the underlying DOA parameter, ri = 1, we

have

n1 = 3(j − i)T, n2 = (2n − 2j − (j − i))T. (14)

More details about the Fn1,n2 -distribution can be found in

[6]. Let Fi represent the cumulative distribution function of

Fn1,n2 , then p-value for testing Hi against Hj is given by

pij = 1 −Fi(Fij). (15)

Replacing the p-values obtained from (15) in (5), the number

of signals can be estimated by (6). To summarize, all steps of

the proposed full GLRT procedure are listed in Algorithm 1.

2446



4.1. Comparison with Existing Tests

In the existing hypothesis tests for signal detection such as

those discussed in [3],[4], the candidate model Mi is only

tested against the next model in the hierarchy Mi+1 (see (3)).

In other words, Hi is considered as a candidate model if it

passes this single test. On the contrary, the proposed full

GLRT procedure utilizes information collected from compar-

ing Mi with all model classes of higher orders. It is validated

if it is retained in any of these tests. Therefore, it can achieve

powerful results than existing approaches. Moreover, the set

of hypotheses that are not rejected constitute a confidence in-

terval for the true number of signals. Despite of the gain in

power, the proposed approach only requires a few extra steps

in computing p-values since the main computational burden

lies in finding the ML estimates.

5. SIMULATION RESULTS

The proposed full GLRT procedure is tested by numerical ex-

periments. In the simulation, a uniform linear array of 10

sensors with inter-element spacings of half a wavelength is

employed. The narrow band signals are generated by m = 3
uncorrelated signals located at θ3 = [−30◦ 20◦ 24◦] relative

to the broadside. Note that two signals are closely located.

The signal-to-noise ratio (SNR) of the strongest signal runs

from [−8 : 1 : 6] dB in a 1 dB step. The maximal number of

signals Mmax = 6. Each experiment performs 300 trials. As

comparison, the multiple test [3] is applied to the same data.

The significance level α of the full GLRT and the FDR level

q for the multiple test are both kept at 0.1.

In the first experiment, all signals are of equal strengths;

namely, the difference in SNR is [0 0 0] dB. We also test by

various number of snapshots, T = 30, 60, respectively. The

empirical probability of correct detection is illustrated in Fig.

1. By correct detection, it is meant that m̂ = m, the correct

number of signals. For the same number of snapshots, the full

GLRT always outperforms the multiple hypothesis test. In the

threshold region from −4 to 0 dB, the gap in probability of

detection can be as large as 14%. Both algorithms perform

better with larger number of samples at T = 60. At SNR > 3
dB, they all achieve 100% of correct detection.

As mentioned previously, the proposed procedure also

provides a confidence interval to the level of (1 − α) of the

true number of signals. As an example, it was observed in

one trial at T = 30, SNR = −2dB, it was observed that the

hypotheses {H3,H4,H5, H6} were not rejected. Then the

index set {3, 4, 5, 6} constitute of 90% confidence interval

for the true number of signals.

In the second experiment, the signal strength of one signal

is weaker than other two. The difference in SNR [0 − 1 0]
dB. This implies that it becomes more difficult to detect a

weak signal close to a strong one. As shown in Fig. 2, both

approaches show lower probability of correct detection. How-

ever, the full GLRT remains the superior one. The gain of us-

ing the proposed procedure is as high as 12% at SNR = −2dB

for T = 30. For T = 60, similar performance can be ob-

served from Fig. 2.

In summary, the proposed full GLRT has an overall bet-

ter performance than the multiple test procedure. In partic-

ular, the former leads to a significant gain in the threshold

region. As simulation results shown in [3], the multiple test

outperforms the information theoretic criterion based MDL

approach in various scenarios. One could expect that the full

GLRT procedure would provide higher detection capability

than the MDL approach.

Input: array observations {x(t), t = 1, . . . , T}
an upper bound on the number of signals M ,

significance level α.

1. for i = 1, . . . , M
Find the ML estimate θ̂i

end;

2. for i = 1, . . . , M − 1
(a) for j = i + 1, · · · ,M

compute test statistic Fij and pij

end;

(b) Find the minimum

pi = min{pij |j = i + 1, i + 2, . . . , M}.

(c) Validate Hi

Hi is retained if pi ≥ α
Hi is rejected if pi < α.

end;

3. Let {Hi1 ,Hi2 , · · · , Hir} be hypotheses that are not

rejected. The number of signals is estimated by

m̂ = min{i1, i2, . . . , ir}
Output: estimated number of signals m̂,

(1 − α) -confidence interval: {i1, i2, . . . , ir}

Algorithm 1: A Full GLRT for Source Detection

6. CONCLUSION

In this paper, we have considered a full generalized ratio

test for detecting signals embedded in noisy sensor array

data. The proposed approach tests each of the nested models

against all models of higher order. Among the models that

pass the tests, the one with lowest complexity determines the
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Fig. 1. Probability of correct detection. m = 3, Mmax =
10. Reference DOA parameter θ3 = [−30◦ 20◦ 24◦], SNR

= [−8 : 1 : 6] dB, SNR difference = [0 0 0] dB.

number of signals. Compared to the multiple test based ap-

proach in [3] which considers the relation between adjacent

models, more information between candidate models is em-

ployed in the current procedure. It is no surprise that the full

GLRT approach outperforms the multiple test significantly

when the latter fails to provide reliable results. Furthermore,

the proposed test provides meas of constructing confidence

interval of the true number of signals. Simulation shows

that in the critical case involving closely located source and

various strengths, the full GLRT the probability of correct

detection can be improved by 12% by the full GLRT ap-

proach. Given the fact that the computational complexity

of both algorithms is of the same order, we believe that the

full GLRT is a promising alternative to the multiple test for

source enumeration of sensor array signals.
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