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ABSTRACT

A novel R-dimensional (R ≥ 3) model order selection (MOS) cri-
terion is proposed for estimating the number of sources embedded
in noise. By extending the classical r-mode matrix unfolding of
a Rth-order measurement tensor to multi-mode matrix unfolding,
(2R−1 − 1) unfolded matrices are obtained. To maximize the iden-
tifiability, the unfolded matrix whose number of rows is closest to
that of the columns is chosen. Meanwhile, as the so-obtained un-
folded matrix is of large size, a sequence of nested hypothesis tests
on its associated eigenvalues is utilized for MOS in the framework
of the random matrix theory. The maximum number of sources the
proposed enumerator able to identify is on the order of the square
root of the product of all dimension sizes, whereas the identifiability
of existing criteria is limited to the maximum dimension size minus
one. Numerical results are included to illustrate the performance of
the proposed enumerator.

Index Terms— model order selection, source enumeration, ran-
dom matrix theory, tensor algebra

1. INTRODUCTION

R-dimensional (R-D) array signal processing where R ≥ 3, have
numerous applications such as wireless channel estimation, nu-
clear magnetic resonance (NMR) spectroscopy and multiple-input
multiple-output (MIMO) radar imaging [1]. In these implementa-
tions, it is of considerable interest to accurately determine the source
number by using the R-D structure of the array measurements. Usu-
ally, existing approaches require to stack the R-D measurements
into a highly structured matrix, and then use one-dimensional (1-D)
criteria for source enumeration. The 1-D source enumerators mainly
consist of the minimum description length (MDL) [2], Akaike in-
formation criterion (AIC) [3], exponential fitting test (EFT) [4–6]
and random matrix theory (RMT) based algorithm [7,8]. In [5,6,9],
a R-D extension of the 1-D MDL/AIC/EFT criteria is proposed, in
which all r-mode (r = 1, · · · , R) eigenvalues of the R-D mea-
surement tensor YYY ∈ C

M1×···×MR are calculated and combined
to form global eigenvalues. As more sets of eigenvalues are em-
ployed for source enumeration, the R-D scheme is superior to the
1-D counterparts. However, their identifiability is only limited to
(max (M1, · · · ,MR)− 1). To improve the identifiabiltiy, a novel
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RMT-based R-D source enumerator is proposed in this paper by
exploiting the tensor structure of the observed data.

2. DATA MODEL

In general, the observations are modeled as

y(m1,··· ,mR) =
K∑

k=1

a
(1)
k (m1) · · · a(R)

k (mR) + zm1,··· ,mR
(1)

where a
(r)
k (mr) is the mr-th element of the k-th factor of the r-

th mode for mr = 1, · · · ,Mr (r = 1, · · · , R), and zm1,··· ,mR

represents i.i.d. zero-mean circularly symmetric complex Gaussian
(ZMCSCG) noise samples with variance of σ2

z . The noise is uncor-
related both in all dimensions and with the signals. Usually, the R-th
dimension corresponds to the temporal dimension, with MR = N

denoting the number of snapshots and a
(R)
k (mR) denoting the com-

plex amplitude of the k-th signal at the mRth time instant.
The tensor form of (1) is

YYY =

K∑
k=1

a
(1)
k ◦ · · · ◦ a(R)

k +ZZZ (2)

where ◦ denotes the outer product, YYY is the noisy measurement ten-
sor, ZZZ ∈ C

M1×···×MR is the noise tensor collecting noise compo-
nents, and a

(r)
k = [a

(r)
k (1), · · · , a(r)

k (Mr)]
T . In the R-D harmonic

retrieval model [1], a(r)
k (r = 1, · · · , R− 1; k = 1, · · · ,K) has a

Vandermonde structure of the form of a(r)
k = [1, ejμ

(r)
k , · · · ,

ej(Mr−1)μ
(r)
k ]T , where {μ(r)

k } represent the spatial frequencies.
The rank of a tensor is defined in [10]. In this paper, we assume

that the rank of the noise-free measurement tensorYYY0 is equal to the
number of signals, i.e., K. Given the noisy measurement tensor YYY ,
our goal is to estimate the tensor rank, i.e., the number of signals K.

Let M =
∏R

r=1Mr . The sample covariance matrix of the r-
mode (r = 1, · · · , R) matrix unfolding ofYYY is defined as

R̂
(r)

yy =
Mr

M
YYY(r)YYYH

(r) ∈ C
Mr×Mr (3)

where YYY(r) is the r-mode matrix unfolding ofYYY [10].
Classical eigenvalue-based detection criteria are 1-D based and

cannot apply directly to the R-D measurement data. One solution
is to convert the measurement tensor to matrix form by r-mode ma-
trix unfolding, and then employ one or more sets of r-mode (r =
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1, · · · , R) eigenvalues for source enumeration [5, 6, 9]. This solu-
tion does not well exploit the inherent tensor structure of the mea-
surement data, and as a result the identifiability is limited particularly
when none of the dimension sizes is large enough.

3. ALGORITHM DEVELOPMENT

3.1. Random Matrix Theory [8]

For noise-only observations, the distribution of the largest sample
eigenvalue under large-sample large-sensor asymptotic limit is char-
acterized by Theorem 1 [11].

Theorem 1: Let Y be p × q (q ≥ p) matrix with i.i.d.
CN (0, σ2

Ip) entries. In the joint limit p, q → +∞, with q/p →
γ ≥ 1, the distribution of the largest eigenvalue l1 of the sample
covariance matrix Ryy = Y Y

H/q converges to a Tracy-Widom
distribution

Pr

{
l1/σ

2 − μ̃q,p

σ̃q,p

}
→ F2(s) (4)

where

μ̃q,p=
1

q

(
1

σ
1/2
q−1,p

+
1

σ
1/2
q,p−1

)(
1

μq−1,p σ
1/2
q−1,p

+
1

μq,p−1 σ
1/2
q,p−1

)
−1

σ̃q,p =
1 + γq,p

q

(
1

σq−1,p
+

γq,p
σq,p−1

)
−1

with σq,p=
(√

q + 1/2+
√

p+ 1/2
)(

1/
√

q + 1/2+1/
√

p+ 1/2
)1/3

,

μq,p=
(√

q+ 1/2+
√

p+ 1/2
)2

and γq,p=(μq−1,p σ
1/2
q,p−1)/(μq,p−1 σ

1/2
q−1,p).

The above expressions provide O(p−2/3) convergence rate in
(4), and for finite q, p, they provide good approximations under the
following two conditions

p � 1 and q/p is close to 1. (5)

For one or more signals embedded in noise, the distribution
of the largest sample eigenvalue under large-sample large-sensor
asymptotic limit is characterized by Theorem 2 [7].

Theorem 2: Consider a setting with K sufficiently strong sig-
nals. Then, in the asymptotic limit p, q → +∞, with q/p → γ > 0,
the (K+1)th largest sample eigenvalue has asymptotically the same
Tracy-Widom distribution as the largest eigenvalue of a noise-only
Wishart matrix, with parameters of q, p−K.

Based on Theorems 1 and 2, an accurate source enumerator
has been developed in [8] where the signal number is estimated
via a sequence of nested hypothesis tests. The algorithm works
as follows. Denote by λ1 ≥ · · · ≥ λp the eigenvalues of Ryy.
For k = 1, · · · ,min(p, q) − 1, the hypothesis test is H0: only
k − 1 signals versus H1: at least k signals. H0 is rejected if
λk > σ̂2

z(k) (μ̃q,p−k + s(α)σ̃q,p−k) where s(α) is determined by
F2(s(α)) = 1−α with α being the confidence level. Here, σ̂2

z(k) is
an estimate for the unknown noise level σ2

z and is calculated based
on the matrix perturbation theory and iteratively solving a non-linear
system of equations, with remarkably improved accuracy over its
maximum likelihood estimator [7, 8].

3.2. Proposed R-D Source Enumerator

First, the r-mode matrix unfolding of a tensor is extended to the
multi-mode matrix unfolding.

Definition 1. Consider a J-D tensor XXX ∈ C
I1×···×IJ . For 1 ≤

j1 < · · · < jd ≤ J (1 ≤ d < J), the (j1, · · · , jd)-mode matrix

unfolding of XXX , denoted as XXX (j1,··· ,jd) ∈ C
(Ij1 ···Ijd

)×
I1···IJ

Ij1
···Ijd , is

a matrix which contains the element x(i1,··· ,iJ ) at the position with
row number equals to

ij1 + · · ·+ (ijd − 1)Ij1 · · · Ijd−1

and column number equals to

i1 + · · ·+ (ij1−1 − 1)I1 · · · Ij1−2 + (ij1+1 − 1)I1 · · · Ij1−1

+ · · ·+ (ijd−1 − 1)I1 · · · Ij1−1Ij1+1 · · · Ijd−2+

(ijd+1 − 1)I1 · · · Ij1−1Ij1+1 · · · Ijd−1 + · · ·+
(iJ − 1)I1 · · · Ij1−1Ij1+1 · · · Ijd−1Ijd+1 · · · IJ−1

Clearly, when d = 1, the multi-mode matrix unfolding reduces
to the classical r-mode matrix unfolding. The sample covariance
matrix associated with the (r1, · · · ,rd)-mode matrix unfolding
YYY(r1,··· ,rd) is defined as

R̂
(r1,··· ,rd)

yy =
Mr1 · · ·Mrd

M
YYY(r1,··· ,rd)YYYH

(r1,··· ,rd)
(6)

where R̂
(r1,··· ,rd)

yy ∈ C
(Mr1 ···Mrd

)×(Mr1 ···Mrd
). The set of eigen-

values of (6) is called the (r1, · · · , rd)-mode eigenvalues of YYY .
Note that each division of the index set I = {1, · · · , R} to

two non-zero disjoint subsets {r1, · · · , rd} and I/{r1, · · · , rd}
will result in a pair of mutually-transposed matrix unfolding: the
(r1, · · · , rd)-mode one with size of (Mr1 · · ·Mrd) × M

Mr1 ···Mrd

,

and the I/{r1, · · · , rd}-mode one with size of M
Mr1 ···Mrd

×
(Mr1 · · ·Mrd ). The total number of such division of I , the same as
that of pairs of mutually-transposed matrix unfolding of YYY , is(

C1
R + C2

R + · · ·+ CR−1
R

)
/2 = 2R−1 − 1 (7)

As a pair of mutually-transposed unfolded matrices yield the
same set of non-zero eigenvalues up to an irrelevant constant mul-
tiplication factor, we consider only the one whose number of rows
is less than or equal to that of the columns. We choose from the re-
sulting 2R−1 − 1 matrices the one whose number of rows is closest
to that of the columns for source enumeration, which is denoted as
Y

(1).
Taking an example of R = 4,M1 = 5,M2 = 3,M3 =

6,M4 = 4,YYY ∈ C
5×3×6×4, there are totally 2R−1−1 = 7 unfolded

matrices, namely, YYY(2,3) = YYYT
(1,4) ∈ C

18×20, YYY(1,2) = YYYT
(3,4) ∈

C
15×24, YYY(2,4) = YYYT

(1,3) ∈ C
12×30, YYY(3) = YYYT

(1,2,4) ∈ C
6×60,

YYY(1) = YYYT
(2,3,4) ∈ C

5×72, YYY(4) = YYYT
(1,2,3) ∈ C

4×90, and

YYY(2) = YYYT
(1,3,4) ∈ C

3×120. Hence Y
(1) = YYY(2,3) ∈ C

18×20.
The RMT-based source enumerator is originally proposed to es-

timate the number of 1-D signals. For estimating the number of
R-D signals at hand, we propose to apply the algorithm to the set
of eigenvalues associated with Y

(1), and call the resultant criterion
R-D RMT. This R-D RMT criterion has the following advantages:

I) Higher detection probability. From the choice of Y (1), we
can see that among all unfolded matrices, the difference between the
number of rows P1 and that of columns Q1 of Y (1) is the smallest.
Therefore, conditions (5) are better satisfied and better approxima-
tions can be achieved by using the Tracy-Widom distribution.

II) Improved identifiability. Using Y
(1), the R-D RMT criterion

can detect up to (P1 − 1) signals, while the R-D criterion in [9]
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can detect at most (max (M1, · · · ,MR)− 1) signals. For R > 3,
P1 − 1 	 √

M1 × · · · ×MR � max (M1, · · · ,MR)− 1.
In the absence of noise, it can be proved that the rank of Y (1)

is less than or equal to the rank of YYY , i.e., the number of signals.
Furthermore, for the R-D harmonic retrieval model, when K ≤ P1,
the rank of Y (1)

0 has been shown by extensive numerical simulations
to be equal to the rank ofYYY0 almost surely, if {μ(r)

k | r = 1, · · · , R−
1; k = 1, · · · ,K} are drawn from a continuous distribution, and the
source amplitudes are i.i.d Gaussian distributed.

The performance of the RMT-based source enumerator with
constant confidence level is not robust to the number of signals. For
a relatively low confidence level, it works well when the number of
signals is small, while tends to underestimate the number of signals
when the source number is large. For a relatively high confidence
level, on the contrary, it works well for large source numbers, while
tends to overestimation for small source numbers. To overcome this
drawback, we propose to use an adaptive confidence level instead of
constant one in the R-D RMT criterion. Mathematically, in the kth
(k = 1, · · · , P1 − 1) test,

α(k) =

{
exp [logα1 + (k − 1)/(c− 1) · log(αmid/α1)] , k ≤ c

(α1 + α2)− α(P1 − k), otherwise
(8)

where c = �P1/2� denotes the largest integer less than or equal
to P1/2, α1 and α2 are the user-defined lower and upper bounds
of α, respectively, and αmid = (α1 + α2)/2. The resultant source
enumerator is called adaptive R-D RMT.

4. NUMERICAL EXAMPLES

We take the R-D harmonic retrieval model for illustration. The
spatial frequencies μ

(r)
k (r = 1, · · · , R − 1; k = 1, · · · ,K) are

i.i.d uniformly distributed within [−π, π], and the sources are i.i.d
ZMCSCG distributed with equal power σ2

s . The SNR is defined
as SNR = σ2

s/σ
2
z . 2000 independent Monte Carlo runs have been

conducted. The performance measure is the probability of detection
(PoD), i.e., Pr(K̂ = K), averaged over spatial frequencies, sources
and noise realizations of all Monte Carlo runs.

The PoD’s of the following schemes are compared: MDL/AIC
using eigenvalues associated with Y

(1), two R-D RMT versions
with constant confidence levels α1 = 10−4 and α2 = 0.25, and
adaptive RMT withα(k) defined as in (8). Figure 1 shows the curves
of α(k) used in the following simulation. Note that all investigated
schemes are new because they employ Y

(1).
First we consider a system where K = 5 and K = 54 sources

impinge on a 3-D array of size M1 = 9,M2 = 8,M3 = 7, with
M4 = N = 10 snapshots. In Figure 2, the PoD of the RMT scheme
using Y

(1) and other unfolded matrices for α1 = 10−4 and K = 5
are compared. It can be seen that the PoD of the RMT scheme using
Y

(1) is always better than or comparable to that using other unfolded
matrices. Similar observations are obtained for other parameter set-
tings.

Figure 3 compares the PoD of different schemes. We see that
the R-D RMT scheme can detect the true number of signals in both
source number scenarios. Compared with the R-D MDL/AIC/EFT
schemes [9] which can detect at most 9 sources, the R-D RMT iden-
tifiability is significantly enhanced. However, the performance of
the R-D RMT with constant confidence level is not robust against
the case of wide-range source number variation. For small number
of signals, R-D RMT with α1 = 10−4 works well and is consistent
as the SNR goes to infinity, while for large number of signals, it tends

to underestimate the true number of signals and when K = 54, the
PoD is only 0.6 even at high SNR. On the contrary, R-D RMT with
α2 = 0.25 tends to overestimation for small source numbers and the
PoD is less than 0.8 even at high SNR when K = 5, while for large
source numbers, it works well and gains large-SNR consistency. The
adaptive R-D RMT is a good compromise of both versions and is ro-
bust against source number variation because it works well for both
small and large source numbers and achieves near consistency in the
larger-SNR limit. For relatively large source numbers, AIC/MDL is
not consistent when the SNR goes to infinity, having a tendency to
overestimate the true number of signals. This is consistent with [12].
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Fig. 1: Confidence level α(k) as a function of hypothesized number
of signals k when [α1, α2] = [10−4, 0.25].
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Fig. 2: Comparison of PoD of RMT by using Y
(1) and other un-

folded matrices (α = 10−4,K = 5 ).

Figure 4 considers a system with a 4-D array of size M1 =
3,M2 = 4,M3 = 5,M4 = 6, with M5 = N = 8 snapshots.
In this case, the R-D EFT/MDL/AIC schemes proposed in [9] can
detect at most 7 sources, while the proposed R-D RMT scheme can
detect up to 40. And again, the adaptive RMT scheme shows good
robustness in a wide range of number of signals and its performance
outperforms the AIC/MDL.
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Fig. 3: PoD vs. SNR for a 3-D array of size M1 = 9,M2 = 8,M3 = 7, with M4 = 10 (left: K = 5; right: K = 54).
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Fig. 4: PoD vs. SNR for a 4-D array of size M1 = 3,M2 = 4,M3 = 5,M4 = 6, with M5 = 8 snapshots (left: K = 2; right: K = 40).

5. CONCLUSION

We have proposed a novel R-D (R ≥ 3) detection criterion for ac-
curate source enumeration. With the generalized multi-mode matrix
unfolding of the measurement tensor and the random matrix theory
(RMT), the eigenvalues associated with the unfolded matrix whose
number of rows is closest to that of the columns are used for model
order selection via a sequence of nested hypothesis tests. Compared
with existing R-D detection schemes, the proposed R-D RMT crite-
rion is able to significantly improve the identifiability. The adaptive
version of the R-D RMT has robust performance and works well in
a wide range of number of signals.
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