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ABSTRACT

This paper introduces new minor (noise) subspace tracking (MST)
algorithms based on the minimum noise subspace (MNS) technique.
The latter has been introduced as a computationally efficient sub-
space method for blind system identification. We exploit here the
principle of the MNS, to derive the most efficient algorithms for
MST. The proposed method joins the advantages of low complexity
and fast convergence rate. Moreover, this method is highly paral-
lelizable and hence its computational cost can be easily reduced to
a very low level when parallel architectures are available. Differ-
ent implementations are proposed for different contexts and they are
compared via numerical simulations.

Index Terms— MNS, Minor subspace, Fast adaptive algorithm

1. INTRODUCTION

Fast estimation and tracking of minor (noise) subspaces is an impor-
tant problem in many applications related to the fields of telecom-
munication and array signal processing [1, 2].

This problem is known for many decades and several solutions
exist in the literature including the Oja (gradient) like techniques
of linear complexity [3, 4, 5] (i.e, of complexity O(nm) flops per
iteration where n is the size of the observation vector and m is the
rank of the desired minor subspace) and the power like techniques
(YAST, PAST) of quadratic complexity O(n2) [6, 7].

In this paper, we consider the typical situation where an array
of sensors receives signals from p impinging sources corrupted by
additive white noise so that the observation vector writes as

x(t) = As(t) + n(t) (1)

where x(t) is of size n× 1, s(t) is the p× 1 sources vector, n(t) is
the observation noise of covariance E[n(t)nH(t)] = σ2I and A is
the n× p full column rank array matrix.

We are interested in the adaptive estimation and tracking of the
noise subspace corresponding to the m = n− p dimensional eigen-
subspace associated to σ2, the least eigenvalue of the observed data
covariance matrix R = ARsA

H + σ2I.
For that, we adopted the principle of MNS 1 [9] based on which

new tracking algorithms are proposed. The latter are characterized
by their reduced computational cost which is (for some of the pro-
posed implementations) as low as O(pm) flops per iteration 2. Be-
sides their advantage in term of numerical complexity, the proposed

1This is a method introduced in the context of blind identification of
MIMO systems [8] in order to reduce the computational cost of the subspace
based method.

2To our best knowledge, this is the lowest computational cost ever pro-
posed for solving this MST problem.

algorithms have, in most of the considered cases, the fast conver-
gence rate and good estimation accuracy as compared to existing
methods.

Finally, another non negligeable advantage of our method is its
parallelizable structure inherent to the MNS approach, a feature that
takes more and more importance due to the growing interest in the
distributed estimation for sensors network [10] as well as the grow-
ing demand for the use of parallel architectures and multi-core com-
puting facilities [11].

2. MNS FOR NOISE SUBSPACE EXTRACTION

The MNS method has been introduced in [8] as a fast subspace tech-
nique for the blind identification of MIMO (Multiple Input Multiple
Output) systems. Latter on, this concept was shown to be applicable
to other array processing problems where the observation vector is
corrupted by additive white noise [9].

The MNS consists in using a set of subsystems (sub-arrays) of
minimum noise subspace rank3, then extracting the desired noise
vectors from the least eigenvectors of the covariance matrices of the
considered subsystems. The selection of the subsystems is achieved
according to the PCS (Properly Connected Sequence) concept as
summarized below.

2.1. PCS concept

For an n dimensional system, a subsystem of size p+1 is represented
by a (p + 1)-tuple t = (mi1 , · · · ,mip+1) regrouping the system
sensors used in this system. Then, the PCS is defined as follows [9].

Definition: A sequence of n−p tuples is said to be properly con-
nected if each tuple in the sequence consists of p members shared
by its preceding tuples and another member not shared by its pre-
ceding tuples. A properly connected sequence (PCS) is denoted by
S(p, n) = (t1, t2, · · · , tn−p) where

ti = (mi1 , · · · ,mip ,mip+1), 1 ≤ i ≤ n− p
{mi1 , · · · ,mip} ⊂ {mjk | j < i, 1 ≤ k ≤ p+ 1}
mip+1 /∈ {mjk | ∀j < i, 1 ≤ k ≤ p+ 1}

2.2. Computation of the MNS

The data covariance matrix of the ith subsystem writes as:

Ri = E[xi(t)xi(t)H ] = AiRsA
iH + σ2I (2)

where xi(t) = [xi1 , · · · , xip+1 ]
T is the observed vector of the

sub-system given by the outputs member of the ith tuple ti =
(mi1 , · · · ,mip ,mip+1) and Ai is its corresponding response

3For each subsystem, the corresponding noise subspace is of rank 1.
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matrix. Let ṽi be the least eigenvector of Ri. A set of vectors
{vi}1≤i≤m forming a basis of the noise subspace are constructed in
the following way: for j = 1, · · · , n,

vi(j) =

⎧⎪⎪⎨
⎪⎪⎩

0 if the jth output of the system does

not belong to the ith tuple.

ṽi(j
′
) if the jth output of the system

is the j
′th member of the ith tuple.

For simplicity and also to reduce the computational cost, the
PCS considered is this paper is the one given by:

ti = (m1,m2, · · · ,mp,mp+i), i = 1, 2, · · · , n− p

In the sequel, we assume that the first p row vectors of matrix A
form a full rank p× p matrix.

3. MNS-BASED MTS ALGORITHMS

In this section, we introduce new adaptive algorithms for the MST
using the MNS concept. These algorithms have different perfor-
mances depending on the used technique to estimate the least eigen-
vector of each of the covariance matrices Ri, i = 1, · · · ,m and on
the considered context.

3.1. MNS-OOja

At first, we consider the simplest (and hence cheapest) algorithm
for the least eigenvector extraction, namely the OOja [3] which is a
gradient type method of linear complexity. The estimate of the least
eigenvector vi(t) is updated at time instant t as

yi(t) = vi(t− 1)Hxi(t) (3)

vi(t) = (1 + α|yi(t)|2)vi(t− 1)− αyi(t)∗xi(t) (4)

vi(t) := vi(t)/‖vi(t)‖ (5)

where α > 0 is a learning parameter. This technique leads to an
overall computational complexity of order 2pm + O(m) but suf-
fers from low convergence rate (or even divergence) as compared to
other existing methods especially when the size of the subsystem is
large. To improve the convergence performance, we propose next to
replace the OOja by YAST [6], a more expensive but more efficient
tracking algorithm.

3.2. MNS-YAST-MS

In this implementation, we use YAST for minor subspace (MS) to
estimate the least eigenvector of Ri(t) given by

Ri(t) = βRi(t− 1) + (1− β)xi(t)xi(t)H (6)

where β is the forgetting factor 0 < β < 1. The main steps of YAST
to extract vector vi are as follows:

1. Update Ri(t) as in (6).

2. Form Vi(t) =
[
vi(t− 1),xi(t)

]
where xi(t) = (xi(t) −

yi(t)vi(t− 1))/‖xi(t)− yi(t)vi(t− 1)‖.

3. Compute the 2× 2 matrix Ci(t) = Vi(t)HRi(t)Vi(t).

4. Compute the least eigenvector ui(t) of Ci(t).

5. Compute vi(t) = Vi(t)ui(t)

The main cost (of order O((p + 1)2) comes from steps 1 and 3 re-
lated to the updating of matrix Ri(t) and the matrix vector products,
Ri(t)vi(t − 1) and Ri(t)xi(t). As shown in [6], the first matrix
vector product can be simplified using the projection approximation
and hence its cost is reduced to O(p). In our case, one can reduce
the computational cost of the two other terms by taking advantage of
the fact that all covariance matrices Ri have a common p× p bloc:

Ri =

[
M si

siH di

]
(7)

where M is a common (p× p) matrix, si is a p× 1 vector and di is
a scalar. As we can see, the updating of Ri requires the updating of
M which is done only once and costs p2 flops as well as the updating
of vectors si and scalars di for i = 1, · · · ,m which costs O(pm)
flops. Similarly, the numerical cost of the products Ri(t)xi(t) for
i = 1, · · · ,m can be reduced by observing that

Rixi =

[
Mx1:p + sixp+i

siHx1:p + dixp+i

]
(8)

which shows that the term Mx1:p can be computed only once. Con-
sequently, the overall cost of this algorithm is 2p2 +O(mp).

In our simulations, we observed that this algorithm achieves its
best performance when p < m. For the case p ≥ m, the algorithm’s
convergence can be significantly improved by using the inverse ma-
trix Ri(t)−1 instead of Ri(t) for the computation of vector vi.

3.3. MNS-YAST-PS

Here, we propose to use YAST to estimate the Principal Subspace4

(PS) of Ri(t)−1 which is updated as follows using Schur’s inversion
lemma [12]

Ri(t)−1 =
1

β
(Ri(t− 1)−1 − f ixi

r(t)x
i
r(t)

H) (9)

where xi
r(t) = Ri(t − 1)−1xi(t) and f i = 1−β

β+(1−β)xi(t)Hxi
r(t)

.

This algorithm has the same steps as MNS-YAST-MS except that it
uses Ri(t)−1 instead of Ri(t), xi

r(t) instead of xi(t) and in step 4
we use the principal (instead of least) eigenvector ui(t) of Ci(t).

A direct computation would cost O(p2m) flops per iteration.
However, by considering the particular structure of matrices Ri, one
can reduce this cost to 3p2 +O(mp) as shown below.

First, by using the bloc matrix inversion lemma, one can write:

[
M si

siH di

]−1

=

[
M−1 +M−1si gi siHM−1 −M−1si gi

−gi siHM−1 gi

]

where gi = (di − siHM−1si)−1. Therefore, the fast inversion of
Ri(t) consists in the fast inversion of matrix M(t) using the inver-
sion lemma shown in (9), i.e.

M−1(t) =
1

β
(M−1(t− 1)− fz(t)zH(t)) (10)

where z(t) = M−1(t− 1)x1:p(t) and f = 1−β

β+(1−β)xH
1:p(t)z(t)

, and

the fast computation of matrix vector products M−1si according to

4The least eigenvector of Ri(t), i.e. vector vi, is the principal eigenvec-
tor of its inverse matrix Ri(t)−1.
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the decomposition:

M−1(t)si(t) =
1

β
(M−1(t− 1)− fz(t)zH(t))× (11)

(βsi(t− 1) + (1− β)x1:p(t)x
∗
p+i(t))(12)

= M−1(t− 1)si(t− 1) + λz(t) (13)

where λ = 1−β
β

x∗
p+i(t)(1− fzH(t)z(t))− fzH(t)si(t− 1).

In addition to the previous calculations, in the fast implemen-
tation of YAST, one needs to compute the matrix vector products
Ri(t − 1)−1xi

r(t). Using the bloc inversion form of Ri(t − 1)−1,
as well as equation (10) and the updating equation of si(t), one can
easily show that the above products can be computed in p2+O(mp)
flops per iteration.

3.4. MNS-Hybrid

In the case where a parallel computer architecture is available or if
p � n, we propose here a last implementation version that costs
O(mp2) (or O(p2) if m processors are used in parallel) that has the
advantage of faster convergence as compared to the previous algo-
rithms. It is based on the use of the modified version of the Hybrid
method in [13] which is an appropriate combination between power
method and gradient based method. As in MNS-YAST-PS, the Hy-
brid method is used to estimate the largest eigenvector of Ri(t)−1

in a very similar way to YAST-PS except that it does not use the
projection approximation. The main steps of Hybrid method are

1. Update Ri(t)−1 as in (9).

2. Compute wi = Ri(t)−1vi(t− 1)

3. Form Vi =
[
vi(t− 1),wi

]
where wi = (wi − vi(t −

1)Hwivi(t− 1))/‖wi − vi(t− 1)Hwivi(t− 1)‖.

4. Compute Bi = ViHRi(t)−1Vi

5. Compute the principal eigenvector ei of Bi

6. The desired eigenvector is given by vi(t) = Viei.

4. DISCUSSION

We provide here comments that highlight the advantages as well as
the drawbacks of the proposed MNS-based method.

Numerical complexity: As mentioned earlier, the main advantage of
the proposed algorithms is their low computational cost that ranges
from O(mp) for the MNS-OOja to O(p2m) for the MNS-Hybrid.
For p � n this complexity is much lower than the linear com-
plexity O(mn) of gradient like techniques. This cost reduction is
made possible thanks to the specific structure of the covariance ma-
trix (i.e all noise subspace vectors are associated to the same eigen-
value σ2). Note that this structure has already been exploited in [14]
for the derivation of the fast (batch) subspace method of complexity
O(n2p).

Parallelizable structure: The noise vectors are computed in the MNS
method from different subsystems. Hence, they might be computed
in a parallel scheme if one can afford one computing unit per subsys-
tem, in which case the computational cost reduces to O(p) or O(p2)
flops per iteration. Note that the parallel computing is a growing
interest issue boosted by the fast development of parallel computer
architectures [11].

Convergence rate and estimation accuracy: Surprisingly, the con-
vergence rate as well as the noise subspace estimation accuracy of
the MNS based MST algorithms are relatively comparable (if not
better) than those of the recently proposed YAST algorithm. Indeed,
the eventual performance loss due to the use of a small number of
observation outputs (i.e. we use p + 1 system outputs instead of n)
for the computation of the noise vectors is compensated for by the
side information we exploit related to the specific covariance matrix
structure. In particular, the simulation results show the good be-
haviour or our algorithms in the case of large dimensional systems,
i.e. systems of size n 	 1.

Orthonormalization: A drawback of the proposed method resides
in the fact that the computed noise subspace basis is not orthonor-
mal. An exact orthonormalization using Gram-Schmidt technique
would cost O(p2m) flops per iteration. In general, for most applica-
tions, the exact orthonormality is not a strict requirement, in which
case it would be preferable to use approximate orthonormalization
techniques in order to preserve the low complexity of the proposed
algorithms.

Ill conditioned subsystem matrices: By using only p+ 1 outputs per
subsystem, the risk to have ill conditioned covariance matrices in-
creases leading to ill convergence and poor estimation accuracy. A
possible solution to this problem, would be to generalize the MNS
approach and use p+d outputs per subsystem where d ≥ 1 is a cho-
sen integer parameter that controls the trade off between the com-
putational cost and the algorithm’s convergence performance. This
generalization will be the focus of future works.

5. SIMULATION

The performance of the MNS-based MTS algorithms are assessed
in this section. The proposed algorithms are compared to YAST-PS
applied to the inverse covariance matrix R−1(t) for the estimation
and tracking of the noise subspace5 as well as the MNS-SVD al-
gorithm where the Singular Value Decomposition (SVD) is used to
estimate the least eigenvector of Ri(t). These two algorithms have
been chosen as references because of their high performance level.
The performance index is defined as [6]

η(t) =
1

p0

p0∑
k=1

trace(ΠAΠWk (t))

trace((I−ΠA)ΠWk (t))

where p0 = 50 is the number of Monte-Carlo runs, Wk(t) is the
estimated noise subspace matrix at the k-th run and iteration t and
ΠA (resp. ΠWk (t)) is the orthogonal projection matrix on the range
space of A (resp. on the range space of Wk(t)).

We have chosen two different contexts for a relatively large di-
mensional system to show the effect of p on the proposed algorithms.
Context 1 (n = 20 , p = 3) represented by Fig.1 and context 2
(n = 20 , p = 13) represented by Fig.2. For both contexts, matrix
A is generated following the directional matrix model of linear uni-
form arrays with p randomly selected angle of arrivals, the sources
are independent i.i.d. gaussian processes of unit power and the noise
is spatially white of power σ2 = 0.02.

Simulation results of context 1 show that the MNS-OOja algo-
rithm has the lowest performance accuracy and convergence speed

5Indeed YAST-PS with R−1(t) has faster convergence and better esti-
mation accuracy than YAST-MS with R(t).
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Fig. 2. Comparison of proposed algorithms for n=20 and p=13

followed by the MNS-YAST-MS algorithm then the MNS-Hybrid.
The latter algorithm reaches the same performance as MNS-SVD
and the global YAST-PS. Note also, that in this context the MNS-
YAST-PS algorithm diverged for most of the simulation runs.

When p becomes large (i.e. context 2), MNS-YAST-MS and
MNS-OOja algorithms suffer from low convergence rate or even di-
vergence. As we can see from Fig.2, the MNS-YAST-PS shows good
performance in this context but again, the MNS-Hybrid presents the
best accuracy and convergence rate performance as compared to all
other algorithms considered in this work.

6. CONCLUSION

To our best knowledge, this paper proposes the most efficient noise
subspace tracking algorithms for the case where the observation vec-
tor lives in a p dimensional (signal) subspace and is corrupted by
additive white noise. Our method is inspired from the MNS, a tech-
nique introduced in the context of blind system identification. The
proposed algorithms have low numerical complexity, parallelizable
structures and good convergence and estimation performance. Dif-

ferent implementations which trade off between complexity (varying
from O(pm) to O(p2m)) and convergence performance are consid-
ered. The conducted simulation experiments confirm the good be-
havior of our method as compared to YAST one of the most effective
tracking algorithms in the literature.
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