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ABSTRACT

This paper addresses the problem of principal subspace track-

ing in presence of a colored noise. We propose to extend the

YAST algorithm to handle such a case. We also propose a

Riemannian framework that could benefit to other classical

trackers. Finally, as a proof of concept, our method is com-

pared to the only oblique tracker of the literature on a toy

dataset.

Index Terms— Subspace tracking, matrix manifold,

oblique subspace

1. INTRODUCTION

In signal processing, adaptive estimation of subspaces of co-

variance matrices has been successfully applied (among sev-

eral other applications) in signal denoising and feature extrac-

tion. For a complete review of the area of subspace tracking,

the reader should refer to [1] and references therein. Due to

the numerical complexity of the task, eigenvalue decomposi-

tion (EVD) cannot be directly performed at every time step.

This observation motivates research to find a way to re-

cursively compute the subspace basis. Over the past decade,

several efficient algorithms were tailored for subspace track-

ing. Among the proposed subspace trackers, YAST [2, 3]

has demonstrated an increased stability, a low complexity and

good performances.

For most of the subspace trackers, the signal is assumed

to live in a low dimensional subspace and to be corrupted by

a white noise. They aim at outputing an orthonormal basis of

the signal subspace. However in some cases, subspace track-

ing has to be performed in presence of a colored noise [4, 5].

In this general framework, the problem is formulated as a

Generalized EVD (GEVD).

A non-orthonormal basis of the signal subspace is then the

solution of the problem and is defined with respect to a metric

implied by the noise. The obPAST [5] algorithm is the sole

representative of oblique trackers in the literature.
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Both orthonormal and oblique subspace tracking prob-

lems are usually formulated as constrained optimization prob-

lems. However, in the light of Riemannian geometry [6], both

problems can be formulated as a search on a matrix manifold.

We hereafter propose to extend the YAST algorithm to

handle oblique subspace tracking as well, using classical

tools from the Riemannian geometry. In the appendix section

of [3], the authors minimize the role of Riemannian geometry

as they consider it only in their proofs and miss the important

role that Riemannian geometry can play from an algorithmic

point of view. As we show in this paper, the YAST update

scheme (as well as other classical trackers schemes) already

fits in a Riemannian framework.

This paper is organized as follows : in Section 2, we in-

troduce the oblique subspace tracking problem and then for-

mulate it in a Riemannian framework. Section 3 presents the

oblique YAST algorithm step-by-step and is followed by the

numerical experiments of Section 4. Finally, the main con-

clusions of this paper are summarized in Section 5.

2. SUBSPACE TRACKING & MATRIX MANIFOLD

2.1. General formulation of the problem

The Karhunen-Loève Transform is a powerful tool originated

in statistics that was successfully applied to signal process-

ing. It requires the EVD of the covariance matrix Cs of a

given signal x(t) of size N × 1. If the signal is low dimen-

sional p (with p < N ) and corrupted by a colored noise of co-

variance Cn
1, taking the projection of the signal on the first p

eigenvectors will enhance the signal. The eigenvectors W are

the solution of the maximization of the Generalized Rayleigh

Quotient :

max
W∈RN×p

tr
(
(W�CsW )(W�CnW )−1

)
. (1)

As the complexity of EVD methods [7, Chap. 7] is around

O(N3), this approach is intractable in practice for real time

application. Subspace tracking thus aims at recursively com-

puting an estimation Wt of the eigenvectors with the low-

est possible complexity. By adding constraints on Wt and

1This problem can be adapted to the white noise case by taking Cn = IN.
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considering the estimation Cs(t) of the covariance matrix at

time t, the optimization problem becomes{
maxWt∈RN×p tr

(
W�

t Cs(t)Wt

)
s.t. W�

t CnWt = Ip
(2)

In the literature, several ways are used to estimate the covari-

ance matrix. We focus in this paper on exponential windows

estimation :

Cs(t) = βCs(t− 1) + x(t)x�(t) 0 < β < 1 (3)

Note that, due to space limitation, Cn is assumed to be fixed

through time. The non trivial case of an evolving noise will

be studied in an extended version of this work. A classical

scheme of subspace tracking [1] consists of an update step

and eventually of an orthonormalization step to insure that the

constraints are satisfied. Hereafter, we show that both steps

may fit in a Riemannian framework under certain conditions

and we present the tools of this framework.

2.2. Generalized Stiefel manifold framework

Following the trends summed up in the inspiring book [6],

we propose to make use of the manifold structure of the prob-

lem to solve it efficiently. In this section, we recall the basic

notions on matrix manifolds needed for solving a subspace

tracking problem and give insights on Riemannian geometry.

The author of [8] foresaw the interest of Riemannian geome-

try approaches in signal processing. He also highlighted the

conceptual differences between constrained optimization and

Riemannian approaches.

We now define the Generalized Stiefel manifold as (for

a given matrix B � 0) : StB(N × p) = {X ∈ R
N×p :

X�BX = Ip}. It can be seen as a p-dimensional B-

orthonormal subspace of R
N×N . Providing that Cn � 0,

our optimization problem is now formulated as :{
maxWt tr

(
W�

t Cs(t)Wt

)
s.t. Wt ∈ StCn

(N × p)
(4)

In a Riemannian view, we should express our optimiza-

tion problem as a search along a geodesic curve in the man-

ifold. Such a search being in practice intractable, we chosed

to approximate it by a search along another smooth curve on

the manifold. This smooth curve is defined by a function that

transforms any displacement in the tangent space to a point

on the manifold. Such a function (that also obeys to some

technical conditions, see [6, Sec 4.1]) is called a retraction.

Figure 1 depicts a Riemannian manifold M and a tangent

space at a point X on this manifold. The tangent space is a

vector space that locally approximates the manifold. Then the

retraction is a mapping that locally transforms a search in the

manifold into a search in the tangent space.

As explained in the next section, our algorithm finds a

direction2 in the tangent space, calculates a step length and

2Note that our algorithm is not gradient based and this direction will be

deduced from geometrical properties of our problem.

Fig. 1: Insights on Riemannian geometry : the link between

a manifold M, its tangent space TXM at a point X and the

retraction RX that locally maps a displacement ηξ in TXM
to M.

applies a retraction back on the manifold to obtain the next

iterate.

The definitions of the tangent space and of the retraction

can be found in [6, p. 59] for the orthonormal metric case of

the Stiefel manifold (B = IN ). Deriving the same calculus

for the generalized case, we obtain the following definitions :

• Tangent space at a point X on a Generalized Stiefel

manifold :

TXStB(N × p) = {Z ∈ R
N×p : X�BZ + Z�BX = 0}

• Polar retraction :

∀ξ ∈ TXStB(N × p) and X ∈ StB(N × p) :

RX(ηξ) = (X + ηξ)(Ip + η2ξ�Bξ)−
1
2

There exists several other retractions that can be applied for

(Generalized) Stiefel manifold. Among them, the retraction

based on QR-decomposition could also be applied. In regard

to the classical scheme of subspace tracking defined earlier,

any tracker that uses an additive update living in the tangent

space can be followed by a retraction step. Conversely, any

orthonormalization scheme applied to an update living in the

tangent space should be a valid retraction.

In what follows, we use the pragmatic tools of Rieman-

nian geometry presented in this section and apply them to ex-

tend the YAST algorithm to oblique subspace tracking.

3. OBLIQUE IMPLEMENTATION OF YAST

The generalized eigenvectors Wt are associated to a rank p
oblique projector Ot = CnWtW

�
t , which has the following

properties (besides idempotence) :

OtCnWt = CnWt and W�
t Ot = W�

t .
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At each time step, the new sample x(t) can be projected

onto the previous signal oblique subspace and it defines both

the p-dimensional compressed data vector y(t) and the resid-

ual vector e(t) Cn-orthogonal to Wt−1 :

y(t) = W�
t−1x(t),

e(t) = C−1
n x(t)−Wt−1y(t).

Let σ(t) be its norm (with respect to the Cn metric)

σ(t) =
√
e�(t)Cne(t).

If σ(t) = 0, then the new sample x(t) is actually included

in the old subspace spanned by Wt−1. Otherwise, we can

defined the normalized vector u(t) = e(t)
σ(t) .

Following the YAST approach [2], we assume that the so-

lution of problem 2 lives in the augmented subspace

W t = [Wt−1, u(t)]

and that the oblique projector solution of our problem can be

obtained by removing a direction from the extended oblique

projector Ot = CnW tW
�
t :

Ot = Ot − Cnv(t)v
�(t) (5)

where v(t) is a Cn-unitary vector in the span of W t

v(t) = W tφ(t) (6)

Using algebraic manipulations, the criterion can be rewritten

with respect to the oblique projector

tr
(
W�

t Cs(t)Wt

)
= tr(Cs(t)C

−1
n Ot). (7)

Using Eq. 5, 6 and 7, the optimization problem is then :

{
minφ(t) tr

(
φ�(t)W�

t Cs(t)W tφ(t)
)

s.t. φ�(t)φ(t) = 1
(8)

The additive update proposed in the YAST algorithm is

Wt = Wt−1 − εu(t)φ�(t) = Wt−1 + ηξt (9)

where φ(t) =

[
εφ(t)
ϕ

] } p× 1
} 1× 1

and ε2 + ϕ2 = 1.

As ξt is in the Tangent space of StCn(N, p) at the point

Wt−1, we can use a retraction operation to assure the Cn-

orthonormality. The exact orthonormalization procedure

stated in [1, p. 227] corresponds in our case to a polar re-

traction. It is known to be robust for principal subspace

tracking [9]. Note that, other types of orthonormalization

methods (or retraction methods in our Riemannian context)

could also be applied as in the original YAST algorithm.

Table 1: Pseudo-code of the obYAST algorithm

Input : x(t),Wt−1, Cs(t− 1), Cyy(t− 1)
Constant : Cn, C

−1
n , β

y = W�
t−1x(t)

e = C−1
n x(t)−Wt−1y

σ2 = e�Cne
σ =

√
σ2

if σ > 0
u = e

σ
x′ = Cs(t− 1)C−1

n x(t)
y′ = W�

t−1Cs(t− 1)Wt−1y
y′′ = W�

t−1x
′

γ′ = x�C−1
n x′−2y�y′′+y�y′

σ2

C ′
yy = βCyy(t− 1) + yy�

z = β y′′−y′

σ + σy
γ = β2γ′ + σ2

Cyy =

[
C ′

yy z

z� γ

]
(φ, λ) = max eig(Cyy) % with Cyyφ = λφ
if (φ(p+ 1) < 0) then φ := −φ
ϕ′ = 1− φ(p+ 1)

ε =
√
1− φ(p+ 1)2

φ = 1/ε× φ(1 : p)
Wt = Wt−1 − εuφ� − ϕ′Wt−1φφ

�

endif

Instead of fixing η = ε in the update rule, we propose to

identify it after the application of the polar retraction

Wt =
(
Wt−1 − ηu(t)φ�(t)

) (
Ip + (η2)φ(t)φ�(t)

)−1/2
.

We efficiently reformulate the retraction of the update ηξt as :

−
(√

η2

1 + η2

)
u(t)φ�(t)−

(
1−

√
1

1 + η2

)
Wtφ(t)φ

�(t).

If we make sure that Ot = CnWtW
�
t then we identify(√

η2

1+η2

)
as ε and the simplified update rule follows :

Wt = Wt−1 − εu(t)φ�(t)− (1− ϕ)Wt−1φ(t)φ
�(t) (10)

Note that the proposed update rule consists of the clas-

sical YAST update and an additive correction (ensuring the

Cn-orthonormality). The algorithm can be implemented as in

Table 1, where Cyy(t) = W�
t Cxx(t)Wt is the compressed

covariance matrix. For an optimized implementation in the

orthogonal case, the reader should refer to [3].

4. NUMERICAL EXPERIMENTS

We compare the performances of the oblique YAST tracker

to those of the oblique PAST tracker. As the update of the
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Fig. 2: Performances of the oblique trackers

obPAST algorithm can also be proved to live in the tangent

space of the manifold, polar retraction can be applied to the

result of the obPAST algorithm. The retracted obPAST is the

third algorithm in competition.

Two criteria are used to evaluate the algorithms, the dis-

tance to the projector O∗
t computed as the result from the

GEV of the estimated covariance matrix Cs(t) :

D(Ot, O
∗
t ) = ||Ot −O∗

t ||F ,

and the Cn-orthonormality of the matrix Wt :∣∣∣∣W�
t CnWt − Ir

∣∣∣∣
F ,

where || · ||F denotes the Frobenius norm. We have used a

simulation protocol similar to [5]. In this toy problem, nine

sensors measure three cosine signals corrupted with a col-

ored noise. The noise covariance matrix Cn is set as cij =
0.01 × (0.9 + 0.1 × δij) × (m − i + 1) × (m − j + 1)
with m = 9 and do not evolve. For the three algorithms,

the forgetting factor β is set to 0.995 and the SNR is equal to

6 dB. The spatial frequencies of the cosine change according

to the scenario in [5]. First, the frequencies linearly change

from [−0.2 0.3 0.2] to [−0.2 0.2 0.3] within the 1000 first

samples. Then, they are constant until a sudden change to

[−0.2 0.2 0.4] at the 1200th snapshot occurs.

We averaged the results over 100 independent runs and

compared the three algorithms. The distances to the projec-

tor O∗
t are presented in green in Figure 2. The obYAST al-

gorithms clearly outperformed the two competitors. The re-

tracted version of obPAST shows a similar behaviour (though

slightly worse) as the regular obPAST. Those results are co-

herent with those achieved by the orthogonal YAST algorithm

[2, 3]. Blue curves in Figure 2 show that the used polar retrac-

tion is a powerful tool to ensure that the Cn-orthonormality

constraint is satisfied. Indeed, unlike the obPAST method,

the two retracted methods present numerically negligible de-

viation from the Cn-orthonormality.

5. CONCLUSION

In this paper, we extended an efficient subspace tracker to the

oblique case. Moreover, we showed that mathematical tools

from the Riemannian geometry are well suited for this kind

of problem. As we only used the polar retraction, we plan

to study the impact of other retractions on trackers and to ex-

tend this work to minor subspaces and complex signals. In

future work, we plan to improve obYAST and to apply it for

Brain Computer Interfaces that need efficient and adaptive al-

gorithm for GEV. Moreover, in order to be more realistic, we

intend to study the challenging problem of time-varying col-

ored noise.
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