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ABSTRACT

Sparsity has been shown to be very useful in blind source separa-
tion. However, in most cases the sources of interest are not sparse
in their current domain and are traditionally sparsified using a pre-
defined transform or a learned dictionary. In this paper, we address
the case where the underlying sparse domains of the sources are not
available and propose a solution via fusing the dictionary learning
into the source separation. In the proposed method, a local dictio-
nary is learned for each source along with separation and denoising
of the sources. This iterative procedure adapts the dictionaries to the
corresponding sources which consequently improves the quality of
source separation. The results of our experiments are promising and
confirm the strength of the proposed approach.

Index Terms— Blind source separation, dictionary learning,
image denoising, morphological component analysis, sparsity.

1. INTRODUCTION

The instantaneous blind source separation (BSS) problem can be
presented by the following linear mixing model:

Y = AX+V, (1)

where Y ∈ R
m×N , composed of m row vectors {yj}mj=1, is

the observation matrix, X ∈ R
n×N , composed of n row vectors

{xj}nj=1, is the source matrix and A is the m × n mixing matrix.
The additive noise matrix of size m ×N is denoted by V. In BSS
the aim is to estimate both A and X from the observations. Ex-
ploiting statistical independency of the sources, using independent
component analysis (ICA) techniques [1], is one of the popular
approaches for solving (1). Another useful assumption is sparsity
of the sources which has been received much attention recently.
The term sparse refers to signals/images with small number of
non-zero samples. In sparse component analysis (SCA) it has been
shown that sparsity improves the source diversity and enables the
separation of the sources [2]. In a recent advanced technique, called
multichannel morphological component analysis (MMCA) [3, 4],
the main assumption is that each source can be sparsely represented
in a specific known transform domain. It is an extension of pre-
viously proposed method of morphological component analysis
(MCA) [5–8] to the multichannel case. In MCA the given sig-
nal/image is decomposed into different morphological components
subject to sparsity of each component in a known basis (or dictio-
nary). MMCA performs well when a priori knowledge about the
sparsifying transforms for each individual source is available; but
what if such a priori is not available or what if the sources are not
sparsely representable using the predefined basis?

One recent approach has been proposed in [9] which attempts
to learn a single dictionary from the mixture of two images and
then applies a decision criterion to the dictionary atoms to separate
the images. In another recent work, Peyre et al. [10] presented an
adaptive MCA scheme by learning the morphologies of image lay-
ers. They proposed to use both adaptive local dictionaries and fixed
global transforms (e.g. wavelet, curvelet) for image separation from
a single mixture. However, both the above methods are limited to
the case of single mixture of two additive images plus noise.

In this paper we consider the general BSS model (with m ≥
n) where the sparsifying dictionaries/transforms are not available.
We propose a novel approach to adaptively learn the dictionaries
from the mixed images within the source separation process. This
method is motivated by the idea of image denoising using a learned
dictionary from the corrupted image in [11]. We start by theoret-
ically extending the denoising problem to BSS. Then, a practical
algorithm is proposed for BSS without any prior knowledge about
the sparsifying basis. The results indicate that the adaptive dictio-
nary learning, separately for each source, enhances the separability
of the sources.

In the next section the problem formulation followed by theo-
retical extension of image denoising to source separation is given.
In section 3 a practical approach for this purpose is proposed. The
numerical results are given in section 4. Finally, the paper is con-
cluded in section 5.

2. PROBLEM FORMULATION

2.1. Image denoising

Consider Gaussian noise added to an image, i.e. Y = X+V . Elad et
al. [11] proposed an image denoising method via learning a dictio-
nary using the corrupted image itself. They use small (overlapped)
patches of noisy image, Y , to learn a sparsifying dictionary using
K-SVD (see [12]). The obtained dictionary is called local, since
it describes the local features extracted from small patches. Let us
represent the noisy

√
N ×√

N image Y by vector y of length N .
The unknown denoised image X is also vectorized and represented
as x. The i-th

√
r × √

r patch from X is shown by vector Rix
which is of length r � N . For notational simplicity the i-th patch
is expressed as explicit multiplication of operator Ri (as a binary
r × N matrix) by x. However, in practice, we apply a nonlinear
operation to extract the patches from image X by sliding a mask
of appropriate size over the entire image. Given that, the overall
denoising problem in [11] is expressed as

min
D,{si},x

λ ‖y − x‖2
2
+

p∑
i=1

[
μi ‖si‖0 + ‖Dsi −Rix‖22

]
, (2)

where scalars λ and μ control the noise power and sparsity de-
gree, respectively. Also, D ∈ R

r×k is the sparsifying dictionary
which contains normalized columns (also called atoms) and {si}
are sparse coefficients of length k. ‖·‖

0
denotes the �0-norm and

counts the number of non-zeros. We note that index i, throughout
the paper, indicates the i-th patch. Furthermore, the total number of
extracted patches from an image is denoted by p.

In [11], the minimization of (2) starts with extracting and re-
arranging all the patches of X . The patches are then processed by
K-SVD [12] which updates D and estimates the sparse coefficients
{si}pi=1

. Afterward, D and {si}pi=1
are assumed fixed and x is

estimated by computing

x̂ = (λI+

p∑
i=1

R
T
i Ri)

−1(λy+

p∑
i=1

R
T
i Dsi), (3)

where I is the identity matrix and (·)T denotes transpose operation.
Again, D and {si} are updated by K-SVD but this time using the
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patches from x̂ which are less noisy. Such conjoined denoising and
dictionary adaptation is repeated to minimize (2). In practice, (3)
is obtained computationally easier since

∑
i
R

T
i Ri is diagonal and

(3) can be calculated in a pixel-wise fashion. It is seen that (3) is a
kind of averaging using both noisy and denoised patches, which if
repeated along with updating of other parameters, will denoise the
entire image [11].

2.2. Multichannel source separation

In this section the aim is to extend the denoising problem (2) to
the multichannel source separation. Consider the BSS model intro-
duced in section 1, and assume further that the sources of interest
are 2-D grayscale images. The BSS model for 2-D sources can be
represented by vectorizing all images {X1, . . .Xn} to {x1, . . .xn}
and then stacking them to form X = [xT

1 , . . .x
T
n ]. The BSS model

(1) cannot be directly incorporated into (2) as we require both X
and Y to be single vectors. Hence, we use the vectorized versions
of these matrices in model (1) which can be obtained using the prop-
erties of the Kronecker product1:

y = (I⊗A)x+ v. (4)

In the above expression x = vec(X) and y = vec(Y) are column
vectors of length nN and mN , respectively. (I⊗A) is a block
diagonal matrix of size mN ×nN , and ⊗ is the Kronecker product
symbol. We consider the noiseless setting and modify (2) to

min
D,{si},x

λ
∥∥y − (I⊗A)x

∥∥2

2
+

p∑
i=1

[
μi ‖si‖0 + ‖Dsi −Rix‖22

]
.

(5)
It is seen that the above expression is similar to (2) with an extra
variable (i.e. mixing matrix A) which should be estimated. In ad-
dition, the vectors x and y are much lengthier than x and y as they
represent vectorized versions of multiple images and mixtures. The
same principle as that explained in section 2.1 can be applied to
update D and {si}. However, estimation of x is slightly different
from that of x in (3). It has a closed form solution which is obtained
by taking the gradient of (5) and setting it to zero:

0 = λ (I⊗A)T
(
(I⊗A)x− y

)
+

p∑
i=1

R
T
i (Rix−Dsi), (6)

which leads to:

x̂ = (λ(I⊗A)T (I⊗A) +

p∑
i=1

R
T
i Ri)

−1 . . .

. . . (λ(I⊗A)Ty +

p∑
i=1

R
T
i Dsi). (7)

In order to estimate A we consider all unknowns, except A, fixed
and simplify (5) by converting the first quadratic term into ordinary
matrix product and obtain:

min
A

λ ‖Y −AX‖2
F
. (8)

The above minimization problem is easily solved using the pseudo-
inverse of X as:

Â = YX
T (XX

T )−1. (9)
The above steps (i.e. estimation of D, {si}, x and A) should

be alternately repeated to minimize (5). However, the long expres-
sion (7) is not practically computable, especially if the numbers of
sources and observations are large. That is because of dealing with
huge mN × nN matrix (I ⊗ A). In addition, in contrast to the
aforementioned denoising problem, the matrix to be inverted in (7)
is not diagonal and, so, the estimation of x cannot be calculated
pixel-by-pixel, which makes the situation more difficult to handle.
In the next section a practical approach is proposed to solve this
problem.

1The matrix multiplication can be expressed as a linear transformation
on matrices. In particular: vec(ABC) = (CT ⊗ A)vec(B) for three
matrices A, B and C. In our case, vec(AX) = (I ⊗A)vec(X).

3. ALGORITHM

In order to find a practical solution for (5) we use a hierarchical
scheme such as the one in MMCA [3]. To do this, the BSS model
of (1) is broken into n rank-1 multiplications and the following min-
imization problem is defined:

min{
aj ,Dj ,

{si},x
j

}λj‖Ej − ajx
j‖2F +

p∑
i=1

[μi‖si‖0 + ‖Djsi −Rix
jT ‖22],

(10)

where ‖·‖
F

stands for the Frobenius norm, Dj denotes the dictio-
nary corresponding to j-th source, i.e. xj , and aj indicates the j-th
column of A. It is worth mentioning that the patch extractor, R,
operates similarly on all the image sources {xj}nj=1 and thus we do
not include the source index j for it in our formulations. The j-th
residual Ej in (10) is expressed as:

Ej = Y −
n∑

l=1

l �=j

alx
l. (11)

The main advantage of formulations (10) and (11) is a significant
reduction in dimensions (compared with (5)) and the possibility to
calculate the image sources pixel-wise. In addition, learning an in-
dividual dictionary for each source within the separation process
increases the diversity of the sources adaptively.

The solution for (10) is achieved using an alternating scheme.
The minimization process for j-th hierarchy can be expressed as
follows. The image patches are extracted from j-th image source,
Xj (equivalent to xj), and then processed by K-SVD for learning
Dj and estimating sparse coefficients {si}pi=1

, while other param-
eters are kept fixed. Then, the gradient of (10) with respect to xj is
calculated and set to zero:

0 = λja
T
j

(
ajx

j −Ej

)
+

p∑
i=1

(
x
j
R

T
i − s

T
i D

T
j

)
Ri =

λjx
j + x

j

p∑
i=1

R
T
i Ri − λja

T
j Ej −

p∑
i=1

s
T
i D

T
j Ri. (12)

Finally:

x̂
j = (λja

T
j Ej +

p∑
i=1

s
T
i D

T
j Ri)(λjI+

p∑
i=1

R
T
i Ri)

−1. (13)

It is interesting to notice that the inverting term in the above ex-
pression is the same as that in (3) for the denoising problem. Thus,
as mentioned before, this calculation can be obtained pixel-wise.

Next, in order to update aj a simple least square linear regres-
sion such as the one in [3] will give the solution:

âj = Ejx
jT . (14)

However, a normalization step for âj is necessary after each update
to preserve the column norm of the mixing matrix. The above steps
for updating all variables are executed for all j from 1 to n. More-
over, the entire procedure should be repeated to minimize (10). A
pseudo-code of the proposed algorithm is given in Algorithm 1.

As already implied, the motivation behind the proposed algo-
rithm is to learn source-specific dictionaries offering sparse repre-
sentations. Indeed, in the first few iterations of Algorithm 1 each
source includes portions of other sources. However, the dictionar-
ies gradually learn the dominant components and reject the weak
portions caused by other sources. Using these dictionaries, the es-
timated sources—which are used for dictionary learning in the next
iteration—will have less amount of irrelevant components. This
adaptive process is repeated until most of the irrelevant portions are
rejected and the dictionaries become source-specific. All the above
procedure is carried out to minimize the cost function in (10).

Similar to the denoising method in [11], the proposed method
also requires the knowledge about noise power. This should be uti-
lized in the sparse coding step of the K-SVD algorithm for solving
the following problem:
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Algorithm 1: The proposed algorithm.
Input: Observation matrix Y, patch size r, dictionary size k,

number of sources n, noise standard deviation σv ,
regularization parameter λ, and number of iterations M .

Output: Dictionaries {Dj}nj=1
, sparse coefficients {si}, sources

matrix X, and mixing matrix A.
1 Initialize all Dj ’s with discrete cosine transform (DCT) bases.
2 Initialize A to a random matrix, and set X← ATY.
3 Choose σ to be multiple times of σv , and set Δσ = 1

M
(σ − σv).

4 repeat
5 λ = 30/σ;
6 for j=1 to n do
7 Extract all the patches from x

j ;
8 Apply K-SVD to the patches and update {si}pi=1

and Dj ;
9 Calculate the residual using (11);

10 Compute x
j using (13);

11 aj ← Ejx
jT ;

12 aj ← 1

‖aj‖
2

aj ;

13 end
14 σ ← σ −Δσ;
15 until stopping criterion is met;

∀i : min
si

‖si‖0 s.t. ‖Djsi −Rix
jT ‖22 ≤ (Cσv)

2, (15)

where C is a constant and σv is the noise standard deviation. Incor-
porating the noise power in solving (15) has an important advantage
in the dictionary update stage. It ensures that the dictionary does not
learn the existing noise in the patches. Consequently, the estimated
image using this dictionary would become cleaner which will later
refine the dictionary atoms in the next iteration. This progressive
denoising loop is repeated until a clean image is achieved.

In the proposed method, however, the noise means the portions
of other sources which are mixed with xj . Hence, we initially con-
sider a high value for (Cσv)

2, since the portions of other sources
might be high even though the noise is zero, and then gradually
reduce it to zero as the iterations evolve. Nevertheless, if the ob-
servations themselves are noisy, then, we should start from a higher
bound and decrease it toward the actual noise power as the iterations
evolve. This annealing scheme is shown in Algorithm 1.

4. RESULTS

In the first experiment we illustrate the results of applying Algo-
rithm 1 to the mixtures of four sources. A 6 × 4 full-rank random
column-normalized A was used as the mixing matrix. 500 iter-
ations was selected as the stopping criterion. The mixtures were
noiseless. However, we selected λ = 30/σv (below see the rea-
son for this choice) and used a decreasing σv starting from 10 and
reaching to 0.01 at the end of iterations. The patches had 50% over-
lap. Other parameters were chosen as follows: r = 64, k = 256,
N = 128 × 128, and C = 1. Figure 1 illustrates the results of the
proposed method together with the results of two ICA-based meth-
ods, namely FastICA2 and SMICA (spectral matching ICA) [13].
It is seen from this figure that the proposed method could recover
the image sources with significantly smaller MSEs (mean square er-
rors) among other methods, while it does not use any prior knowl-
edge about sparsifying basis. In addition, the obtained dictionaries,
shown at the bottom row of Figure 1, are well adapted to the cor-
responding sources. These results confirm the effectiveness of the
proposed method over the ICA-based approaches for image source
separation.

In the next experiment, the performance of the proposed
method in noisy situations is evaluated. For this purpose, we
generated four mixtures from two images: Lena and Boat (Figure
2 (a)). Then, Gaussian noise with standard deviation of 15 was
added to the mixture so that the PSNR of the mixture equaled 10
dB. The algorithm started with σv = 25 and evolved while σv

2Available at http://research.ics.tkk.fi/ica/fastica/
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Fig. 1: Separation results of six noiseless mixtures.

was gradually decreasing to σv = 15. We used fully overlapped
patches and 200 iterations, with the rest of the parameters similar
to the previous experiment. One of the considerable advantages of
the proposed method is the ability to denoise the sources during the
separation. This is because the core idea of the proposed method
comes from a denoising task. In contrast, in most conventional BSS
methods the denoising should be carried out either before or after
the separation, which is not ideal and may lead the algorithm to
fail. The results of this experiment are demonstrated in Figure 2. It
is seen from Figure 2 that both separation and denoising tasks have
been successful. The corresponding high PSNRs shown in Figure 2
confirm this observation.

Next, in order to find an optimal λ, we investigated the effects
of choosing different λs on the recovery quality. As expected and
also shown in [11], selection of λ is dependent on the noise stan-
dard deviation, i.e. σv . However, our case is slightly different due
to the source separation task. We empirically observed better per-
formance by starting with a higher value of σv for solving (15) and
decreasing it toward the true noise standard deviation, as the iter-
ations proceed. In our simulations Gaussian noises with different
power were added to the mixtures and the mixing matrix criterion—
ΓA = ‖I − PÂ−1A‖1, where P is the scaling and permutation
matrix— was calculated while varying λ. Figure 3 represents the
achieved results for this experiment. From this figure, it can be
found that all the curves achieve nearly the same recovery quality
for λσv = 30 ∼ 40. Therefore, λ ≈ 30/σv is a reasonable choice.
In the noiseless case where σv = 0 a high value (normally 100) is
chosen for λ. Interestingly, these results and the range of appropri-
ate choices for λ are very similar to what achieved in [11].

It is expected that the computation time of the proposed method
increases for large number of sources. A set of simulations were
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Table 1: The detailed simulation time of Algorithm 1. “Total” means the total time (in second) elapsed per one iteration.

Image size:
√
N ×

√
N 128 × 128 256× 256

Mixing matrix size: m,n 4, 2 4, 2 8, 4 8, 4 16, 8 16, 8 4, 2 4, 2 8, 4 8, 4 16, 8 16, 8
Patch size: r 16 64 16 64 16 64 16 64 16 64 16 64
Dictionary atom size: k 64 256 64 256 64 256 64 256 64 256 64 256
Computation time (sec):
Sparse coding (Batch-OMP [14]) 0.032 0.059 0.073 0.133 0.134 0.172 0.116 0.184 0.354 0.747 0.760 0.965
Dictionary update 0.366 1.229 0.724 2.314 1.450 4.391 0.565 1.594 1.532 4.786 2.772 7.675
Residual calculation 0.001 0.002 0.003 0.003 0.007 0.007 0.008 0.008 0.016 0.016 0.038 0.038
x̂j estimation 0.081 0.023 0.161 0.047 0.324 0.094 0.325 0.93 0.654 0.196 1.326 0.395
aj update and normalization 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002 0.002 0.004 0.004
Total 0.540 1.333 1.091 2.547 2.229 4.815 1.260 1.961 3.104 5.966 6.300 9.802

(a)

PSNR=28.700 dB

Original

PSNR=29.116 dB

Denoised Dictionary

(b)

Fig. 2: (a) Noisy mixtures, (b) separation results.
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Fig. 3: Mixing matrix criterion as a function of λσv .

conducted to numerically demonstrate this effect and also to evalu-
ate the effects of changing other parameters such as patch size and
dictionary size on the simulation time. In Table 1 we have given
these results per one iteration of Algorithm 1, where the image
patches had 50% overlap. A desktop computer with a Core 2 Due
CPU of 3 GHz and 2 GB of RAM was used for this experiment. It
is interesting to note that as seen from Table 1 much of the com-
putational burden is incurred by the dictionary update stage (using
K-SVD). In addition, the computation of x̂j is far less complicated
than both “sparse coding” and “dictionary update”, due to pixel-
wise operation. This implies that further effort is required to speed
up the dictionary learning part of the proposed algorithm.

5. CONCLUSION

In this paper the multichannel source separation problem has been
addressed. Unlike the existing sparsity-based methods, we assumed
there is no prior knowledge about the underlying sparsity domain
of the sources. Instead, we have proposed to fuse learning adaptive
dictionaries for each individual source into the separation process.
Our simulation results on both noisy and noiseless mixtures have
been encouraging and confirmed the effectiveness of the proposed
approach.
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