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ABSTRACT

Considerable attention has been devoted to the reverberant

blind source separation problem: in particular, the concept of

time-frequency masking. However, realistic acoustic scenar-

ios often comprise not only reverberation, but also additive

noise due to factors such as non-ideal channels. This paper

presents robust evaluations of a time-frequency masking ap-

proach for separation in such realistic conditions. The fuzzy

c-means clustering algorithm is used to cluster spatial fea-

ture cues into a time-frequency mask. Experimental results

demonstrated superiority in separation, with notable improve-

ments in the SNR additionally observed. Not only does this

establish the proposed scheme viable for reverberant blind

source separation, but also as a credible means of speech en-

hancement in the presence of additive broadband noise.

Index Terms— Blind source separation, reverberation,

additive noise, fuzzy c-means clustering, time-frequency

mask estimation.

1. INTRODUCTION

The human auditory system has a remarkable capability of

distinguishing between simultaneous multiple speakers in ev-

eryday situations. Unfortunately, automatic speech process-

ing systems do not consistently have such abilities, and are

thus often faced with the quintessential ”cocktail party prob-

lem” [1]. Source separation is the recovery of the original

sources from a set of observations; if no a priori information

of the system available, it is termed blind source separation

(BSS). BSS has many important applications including med-

ical imaging, communication systems and speech processing.

However, almost all real-world applications of BSS have

the undesired aspect of additive noise at the recording sensors

[2]. The influence of additive noise has been described as a

very difficult and continually open problem in the BSS frame-

work [3]. Numerous studies have been proposed to solve this:

[4] presents a two-stage denoising/separation algorithm; [2]
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implements a FIR filter at each channel to reduce the effects

of additive noise; and [5] suggests a preprocessing whitening

procedure for enhancement. Whilst noise reduction has been

achieved with denoising techniques implemented as a pre- or

post-processing step, the performance was proven to degrade

significantly at lower signal-to-noise-ratios (SNR) [6].

The aforementioned techniques for noisy BSS have not

yet been extended in depth to the time-frequency masking

(TFM) approach to BSS. The TFM BSS is centered upon

the premise of sparseness in the constituent source signals:

namely, the w-disjoint orthogonality in the short-time Fourier

Transform domain [7]. The TFM technique has since evolved

as a popular and effective tool in BSS [8], [9], [10].

The original approach as initiated in [7], termed the

degenerate unmixing estimation technique (DUET), was ap-

plied to anechoic mixtures of stereo data. Subsequent re-

search as in [9] proposed the multiple sensors DUET, known

as MENUET, which relaxed the restriction on the number of

sensors and applied the TFM to underdetermined reverberant

mixtures of speech. The mask estimation was also automated

through the application of the k-means clustering algorithm.

Despite the advancements of techniques such as MENUET,

it is not without its limitations; the k-means clustering is not

very robust in the presence of outliers or interference in the

data. This often leads to non-optimal localization and parti-

tioning results, particularly for reverberant mixtures. Fuzzy

c-means (FCM) clustering for mask estimation was investi-

gated in [10], with the applicability of FCM to the MENUET

established in [11]. However, this line of research is yet to be

inclusive of the noisy reverberant BSS case.

This study proposes to evaluate and compare the speech

separation quality of [9], [11] in such environments. An

underdetermined system in a reverberant enclosure is the fo-

cus of this paper, with additive white noise added to each

sensor. Given the spatially uncorrelated random nature of

white noise, it is proposed that evaluations under such con-

ditions will be a good measure of the proposed system’s ro-

bustness. It is hypothesized that the combination of FCM and

MENUET, which will henceforth be denoted as MENUET-
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FCM, is sufficiently robust to withstand the degrading effects

of reverberation and random additive channel noise.

The remainder of the paper is as follows: Section 2 de-

scribes the proposed algorithm in more detail. Section 3

reports the experimental setup and results and compares these

with the MENUET as a baseline. The paper concludes in

Section 4 with insight into future work.

2. SYSTEM OVERVIEW

2.1. Problem statement

Consider a microphone array of M identical sensors in a re-

verberant enclosure where N sources are present. It is as-

sumed that the observation at the mth sensor can be modeled

as

xm(t) =

N∑
n=1

simg
mn (t) (1)

where simg
mn (t) denotes the image of the nth source re-

ceived at the mth sensor. The goal of any BSS system is

to recover the sets of separated source signals {ŝ11(t), . . . ,

ŝ1M (t)},. . . ,{ŝN1(t), . . . , ŝNM (t)}, where each set denotes

the estimated source signal ŝn(t), and ŝmn(t) is an estimate

of the nth source image simg
mn (t) at the mth sensor. Assuming

a convolutive mixing model for the system, each observation

may be approximated by an instantaneous mixture in the

frequency domain

Xm(k, l) =

N∑
n=1

Hmn(l)Sn(k, l) +Nm(k, l) (2)

where (k, l) represents the time and frequency index respec-

tively, Hmn(l) is the room impulse response from source n
and sensor m. Sn(k, l), Xm(k, l) and Nm(k, l) are the STFT

of the mth observation, nth source and additive noise at the

mth sensor respectively. Due to source sparseness [7], [9] the

sum in (2) is reduced to

Xm(k, l) ≈ Hmn(l)Sn(k, l) +Nm(k, l) (3)

Whilst this assumption holds true for anechoic mixtures, as

the reverberation in the acoustic scene increases it becomes

increasingly unreliable due to the effects of multipath propa-

gation and multiple reflections [7], [10].

2.2. Spatial feature extraction

The TF mask is estimated from a set of feature vectors; previ-

ous research has identified level ratios and phase differences

between observations as appropriate features for TF mask-

ing in the BSS framework. Should the source signals exhibit

sufficient sparseness, the level ratios and phase differences

will provide geometric information on the source/sensor lo-

cations and thus facilitate effective separation. The feature

vector θ(k, l) =
[
θL(k, l),θP (k, l)

]T
per TF point (k, l) is

estimated as

θL(k, l) =

[ |X1(k, l)|
A(k, l)

, . . . ,
|XM (k, l)|
A(k, l)

]
(4)

θP (k, l) =

[
1

α
arg

[
X1(k, l)

XJ(k, l)

]
, . . . ,

1

α
arg

[
XM (k, l)

XJ(k, l)

]]
;

(5)

and A(k, l) =

√
M∑

m=1
|xm(k, l)|2 and α = 4πc−1dmax,

where c is the propagation velocity, dmax is the maximum

distance between any two sensors and J is the index of the

reference sensor. The weighting parameters A and α ensure

appropriate normalization of the features. It is widely known

that in the presence of reverberation, a greater accuracy in

phase ratio measurements can be achieved with greater spa-

tial resolution; however, it should be noted that the value of

dmax is upper bounded by the spatial aliasing theorem.

2.3. Clustering

The extracted features θ(k, l) are then clustered by the FCM

algorithm [12] into N clusters. Clustering is achieved by

searching for the optimal cluster centres v∗
n and partitioning

u∗
n(k, l) via minimization of the cost function

Jfcm =

N∑
n=1

∑
∀(k,l)

un(k, l)
q‖θ(k, l)− vn‖2 (6)

where un(k, l) represents the degree of membership of θ(k, l)
to the nth cluster, vn is the nth cluster center and ‖.‖ is a

distance metric, such as the Euclidean distance. The fuzzi-

fication parameter q > 1 controls the membership softness.

In [10] superior mask estimation ability was established for

q = 2; thus, in this work the fuzzification q is set to 2.

The cost function (6) is iteratively minimized by alternat-

ing the updates for cluster centers and memberships

v∗
n =

∑
∀(k,l)

un(k, l)
qθ(k, l)∑

∀(k,l)
un(k, l)q

∀n, (7)

u∗
n(k, l) =

⎡
⎣ N∑
j=1

(‖θ(k, l)− vn‖2
‖θ(k, l)− vj‖2

) 1
q−1

⎤
⎦
−1

∀n, k, l

(8)

until an appropriate termination criterion is met.

2.4. Mask estimation and source recovery

The membership partition matrix from the FCM algorithm

is interpreted as a collection of N fuzzy TF masks, where

Mn(k, l) = u∗
n(k, l). The separated signals in the frequency

domain are then obtained through the application of the mask

per source to an individual observation

Ŝnm(k, l) = Mn(k, l)Xm(k, l). (9)
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3. EXPERIMENTAL EVALUATIONS

3.1. Setup and evaluation measures

The experimental setup in this study was such as to repro-

duce that in [9] and [11] for comparative purposes. Fig. 1

depicts the speaker and sensor arrangement and Table 1 de-

tails the experimental conditions. The wall reflections of the

enclosure, as well as the room impulse responses for each

sensor, were simulated using the image model method for

small-room acoustics [13]. Spatially uncorrelated white noise

was then added to each sensor mixture such that the overall

channel SNR assumed a value as in Table 1. The SNR defini-

tion used was as in [14], which uses the standardized method

of objectively measuring speech as in [15]. The four speech

sources were realized with phonetically-rich utterances from

the TIMIT database, with a representative number of mix-

tures constructed in total. It is widely recognized that the per-

formance of clustering algorithms is firmly dependent on the

initialization of the algorithm. For both the MENUET and

MENUET-FCM, the best of 100 runs was selected for initial-

ization in order to minimize the possibility of finding a local,

as opposed to global, optimum.

For the purposes of performance evaluation, two versions

of the publicly available MATLAB toolboxes BSS EVAL were

implemented [16], [17]. Separation performance was evalu-

ated with respect to the signal-to-distortion ratio (SDR) and

the signal-to-interference ratio (SIR) as defined in [16]. This

assumes the decomposition of estimated source ŝn(t) as

ŝmn(t) = simg
mn (t) + êspatmn (t) + êintmn(t) + êartifmn (t) (10)

where êspatmn (t), êintmn(t) and êartifmn (t) are the undesired error

components that correlate to the spatial distortion, interfer-

ences and artifacts respectively. The SIR and SDR are then

calculated as

SIRn = 10log10

M∑
m=1

∑
t
(simg

mn (t) + êspatmn (t))2

M∑
m=1

∑
t
êintmn(t)

2

(11)

SDRn = 10log10

M∑
m=1

∑
t
simg
mn (t)2

M∑
m=1

∑
t

[
êspatmn (t) + êintmn(t) + êartifmn (t)

]2
(12)

The decomposition of the estimated source ŝn(t) as in [17]

was assumed for the calculation of the SNR

ŝn(t) = stargetn (t) + ênoisen (t) + êintn (t) + êartifn (t) (13)

where stargetn (t)) is an allowed distortion of the original

source, and ênoisen (t), êintn (t) and êartifn (t) are the noise, in-

terferences and artifacts error terms respectively. The SNR

Fig. 1: Setup with room dimensions 4.45m x 3.55m x 2.50m.

Number of microphones M = 3

Number of sources N = 4

R 50cm

Source signals 6 s

Reverberation time 0 ms, 128 ms, 300ms

Input channel SNR 0 dB - 30 dB

Sampling rate 8 kHz

STFT window Hanning

STFT frame size 64 ms

Table 1: Experimental conditions.

was subsequently calculated as

SNRn = 10log10
||stargetn (t) + êintn (t)||2

||ênoisen (t)||2 . (14)

3.2. Results and discussion
In order to express the SIR improvement between the speech

mixture input and the estimated BSS output, the SIR gain,

where SIRgain = SIRoutput - SIRinput, was computed. The

reverberation time of the scenario was varied from 0 ms to

300 ms, and the channel SNRs were varied from 0 dB to 30

dB in 5 dB increments. Fig. 2 shows the results for the SIR

gain. It is clear from the plot that the proposed MENUET-

FCM algorithm has significantly increased separation ability

for all tested conditions. In particular, the 300 ms MENUET-

FCM scenario actually outperforms the anechoic MENUET:

this verifies the superiority of the FCM over the k-means for

mask estimation not only in clean reverberant conditions, but

also for noisy reverberant environments.

Fig. 3 depicts the evaluation of the system with respect to

the SDR. Again, it is evident that the MENUET-FCM outper-

forms the MENUET, even at the higher reverberation times.

For the purposes of speech quality assessment, the SNR of

each recovered source signal was calculated and averaged

across all evaluations. Despite the smaller magnitude of im-

provement of the MENUET-FCM system over the baseline

MENUET relative to the SIR gain and SDR improvements,

there still exists remarkable improved SNR values for the

recovered speech sources for all test cases. This suggests that

both the original MENUET and MENUET-FCM have imple-

mentations beyond that of BSS, and in fact may be useful

in applications that also require speech enhancement capa-

bilities. This has important repercussions as it demonstrates

that these approaches bear the potential to replace a speech

enhancement stage in a BSS system.
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Fig. 2: Experimental results with varying reverberation times and

input channel SNRs. Each data point depicts the averaged SIR gain

over 20 combinations of speech utterances.

Fig. 3: Experimental results with varying reverberation times and

input channel SNRs. Each data point depicts the averaged SDR over

20 combinations of speech utterances.

4. CONCLUSIONS

In this paper, the novel amalgamation of two existing BSS

approaches was presented and evaluated in realistic acoustic

environments. Rather than solely focus upon the reverberant

BSS problem, the study extended it to be inclusive of additive

channel noise. It was suggested that due to the FCM algo-

rithm’s documented robustness in reverberant environments,

the extension to noisy reverberant cases would demonstrate

similar abilities. Evaluations confirmed this hypothesis with

noteworthy improvements in the measured SIR gain and

SDR. Furthermore, both the MENUET and MENUET-FCM

were proven to possess inherent speech enhancement abili-

ties, with higher SNRs measured at the recovered signals.

Future work should focus upon improving the robust-

ness of the mask estimation stage (clustering) stage of the

algorithm. For example, the implementation of observation

weights and contextual information as in [10]. Furthermore,

the separation quality of this MENUET-FCM can also be

evaluated in an alternative context; for example, in the au-

tomatic speech recognition discipline. The integration of

Fig. 4: Experimental results with varying reverberation times and

input channel SNRs. Each data point depicts the averaged SNR over

20 combinations of speech utterances.

improved clustering techniques with the established poten-

tial of the MENUET-FCM system is a step towards finding

a solution to the problem of blind source separation in the

presence of noise and reverberation.

5. REFERENCES

[1] E. Cherry, “Some experiments on the recognition of speech, with one

and with two ears”, Journal of ASA, 25(5):975-979, 1953.
[2] A. Cichocki, W. Kasprzak and S.-I. Amari, “Adaptive approach to

blind source separation with cancellation of additive and convolutional

noise”, Proc. ICSP, Beijing, 1996.
[3] N. Mitianoudis, M. Davies, “Audio source separation of convolutive

mixtures”, IEEE Trans. on SAP, 11(5):489-497, 2003.
[4] H. Li, H. Wang and B. Xiao, “Blind separation of noisy mixed speech

signals based on wavelet transform and independent component anal-

ysis”, Proc. ICSP, Beijing, 2006.
[5] S. Shi, X. Tan, Z. Jiang, H. Zhang, and C. Gui, “Noisy blind source

separation by nonlinear autocorrelation”, Proc. CISP, Yantai, 2010.
[6] S.J. Godsill, P.J.W. Rayner and O. Cappe, “Digital audio restoration,

in Appl. of DSPAA. Norwell, MA: Kluwer, 1998, pp. 133193.
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