
A MULTI-MODAL HIGHLIGHT EXTRACTION SCHEME FOR SPORTS VIDEOS USING AN
INFORMATION-THEORETIC EXCITABILITY MEASURE

Taufiq Hasan, Hynek Bořil, Abhijeet Sangwan and John H. L. Hansen

Center for Robust Speech Systems (CRSS), University of Texas at Dallas, Richardson, TX-75080, USA.

ABSTRACT

A generic method for sports video highlight selection is presented in

this study. Processing begins where the video is divided into short

segments and several multi-modal features are extracted from each

video segment. Excitability is computed based on the likelihood of

the features lying in certain regions of their probability density func-

tions that are exciting and rare. The proposed measure is used to rank

order the partitioned segment stream to compress the overall video

sequence and produce a contiguous set of highlights. Experiments

are performed on baseball videos using excitement in the commenta-

tors’ speech, audio energy, slow motion replay, scene cut density, and

motion activity as features. Subjective evaluation of excitability and

ranking of video segments yield a higher correlation with the pro-

posed measure compared to well-established techniques indicating

the effectiveness of the approach.

1. INTRODUCTION

Automatic video summarization has a wide range of applications in

domains such as sports, movies, security, news and on-line video

streaming. Application in sports videos is especially important for

commercial purposes. Many sports viewers are unable to watch en-

tire matches and are only interested to see the highlights. Automat-

ically generating such highlights reliably can thus be very useful.

Many approaches towards automatic event detection and summariza-

tion in sports videos have been reported in the literature. Past meth-

ods use information from a single modality [1], or combine multiple

modalities [2, 3, 4, 5]. Many techniques depend on specific sports

[2, 6], video effects [1], or environments. Methods such as [6] at-

tempt to annotate the full game automatically using sophisticated ma-

chine learning and domain knowledge, whereas other methods tend

to be more generic [7, 3]. In simpler methods such as in [8] for base-

ball games, the probability of a baseball hit and excited speech is

combined to estimate the excitability of a video segment. In general,

the generic highlight extraction methods aim at constructing tempo-

ral features from different modality that are proportional to or indica-

tive of user excitability. Later some kind of fusion technique is used

to generate a single excitement curve providing estimated affective

state of the viewer at each point in time/video segment.

In this study we propose a probabilistic feature fusion technique

for estimating the user excitability for sports videos. The method is

based on a simple but powerful principle of information theory: the

less likely an event, the more information it contains. We assume that
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interesting parts in a video are rare [4] and therefore have high self-

information (also known as the “surprisal”). [9]. This can be intu-

itively understood as follows: if for a given sports video the ambient

noise is always high, then audio energy as an excitement indicator [7]

would be unreliable. In this game there is nothing “surprising” in a

high audio energy. The proposed method aims at estimating the user

excitability directly from low level features using the estimated fea-

ture PDFs over the game videos. Even if extended training videos are

not available, the proposed technique can still extract the highlights

from a single game video by estimating the feature PDFs, provided

that the features used are generally related to user excitement. Using

the proposed excitability measure, the video segments can be rank

ordered and highlights automatically generated.

2. PROPOSED METHOD

The video is first segmented into small blocks for feature extraction.

Several features (scalar parameters) are extracted from each segment

that are modeled to be generally proportional to the excitement level

of the given segment. These features represent long/short term (cu-

mulative) characteristics from different modalities, and used to form

higher level descriptors (features) such as, duration of excited speech,

average motion activity, etc.

Let the random variable Xi be the ith feature and xi(k) be an

observation of that feature in the kth segment. Since, Xi is in general

proportional to the excitability of the video segment, p(Xi ≥ xi(k))
will be very low for highly exciting video segments, i.e., they will be

rare outcomes for the random event {Xi ≥ xi(k)}. Therefore, the

self-information measure (in bits) associated with the random event

{Xi ≥ xi(k)} given by[9],

ζi(k) = I[Xi ≥ xi(k)] = − log2 [p(Xi ≥ xi(k))] , (1)

will be proportional to excitability. For D feature parameters, we

define the random vector X = (X1, X2, ..XD) as the feature vector,

and x(k) as an observation vector in the kth video segment. We can

now refine (1) for D dimensions as:

ζ(k) = − log2 [p(X ≥ x(k))] , (2)

where ζ(k) is a measure excitability in segment k from D features.

Assuming that X1, X2, ..XD are independent, we have

ζ(k) = − log2

D∏
i=1

p(Xi ≥ xi(k)) = − log2

D∏
i=1

∫ ∞

xi(k)

fXi(λ)dλ,

(3)

where fXi is the PDF of the ith feature. The idea is illustrated in

Fig. 1 with two features X1 and X2. For an observation x(k) =
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Fig. 1. Conceptual joint PDF of two multimodal features X1 and

X2 extracted from video segments. Shaded area reveals the high tail

region indicating exciting events.

(x1(k), x2(k)) obtained from the kth segment, the area under the

shaded region determines how likely it is that other segments would

have higher feature values compared to this observation. The advan-

tage of using the proposed measure is that it not only considers the

value of the observation xi(k) in the kth segment, but also takes into

account how likely it is that this feature yields a higher value than

xi(k). Thus ζ(k) can be used to rank video segments from high to

low excitement level.

3. SYSTEM DESCRIPTION

We use six baseball game videos from the 1975 World Series to eval-

uate the proposed highlight generation scheme. Our highlights video

generation depends on a semantic video segmentation, though other

method of segmentation can also be utilized. We define semantic
segments as short self explanatory video segments that can be used as

building blocks for the highlights video. Examples of such segments

can be: play times in soccer games; time interval between each bowl-

ing in cricket; times between each pitching in baseball game, etc.
For our experiments we perform segmentation at the pitching scenes.

This is the only part of the implementation which is game dependent.

The notation used from this point forward are as follows: t, k and

i denote video frame, video segment, and feature index, respectively.

For the i-th feature, Φi(t), xi(k) and Gi(t) indicate feature value

at time t, feature parameter extracted from segment k, and viewer

arousal curve at time t estimate as in [7], respectively. The multi-

modal events/features used for excitability measure: (1) slow motion

replay, (2) camera motion activity, (3) scene cut density, (4) commen-

tators’ speech in high and (5) low excitement levels, and (6) audio

energy. For comparison we also implemented the highlight detection

scheme presented in [7].

3.1. Video processing

3.1.1. Slow motion detection

Pixel-wise mean square distance (PWMSD) feature is used for de-

tecting slow motion regions using the zero-crossing method as de-

scribed in [1]. Since slow motion replay is displayed after some

interesting event in sports, we assume that duration of a slow mo-

tion shot in the k-th semantic segment is proportional to excitability

(given the segment is sufficiently long) and thus we use this measure

Fig. 2. Proposed system block diagram.

as the feature parameter x1(k). To obtain G1(t), we first define the

slow motion function as, Φ1(t) = 1 if slow motion is detected at time

t; or 0 otherwise (Fig. 4 (a)). Next, we filter Φ1(t) to obtain G1(t)
to fulfill the “smoothness” criteria required for the method presented

in [7]. In general, for the ith feature we use the following filter:

Gi(t) = Φi(t) ∗K(l, β) (4)

where, K(l, β) indicates a Kaiser window of length l and scale pa-

rameter β (l = 500 and β = 5 is used).

3.1.2. Camera motion estimation

To detect camera motion, we use a block-matching algorithm sim-

ilar to [10] for motion vector estimation between successive video

frames. The raw motion values are normalized and stored in Φ2(t),
then smoothed using (4) as before to obtain G2(t). Segmental feature

x2(k) is computed by averageing G2(t) across the k-th segment.

3.1.3. Scene-cut density

Scene cut density measure is known to be correlated with excitement

in sports videos and is extracted as is [7]. At each video frame index

t we compute: Φ3(t) = e(1−n(t)−p(t))/δ , where n(t) and p(t) are

frame indices of the two nearest scene-cuts to the left and right of the

frame t, respectively. Again, we use (4) to obtain G3(t) from Φ3(t)
and average G3(t) over the k-th segment to compute x3(k).

3.1.4. Pitching scene detection

The pitching times in baseball are very well suited locations for se-
mantic segmentation. To detect the pitching scenes, the following

operations are performed on each video frame: the field pixels are

detected using the HSV color space condition as in [11] and a binary

image is formed. Fig. 3 (b) shows an example binary image from

a pitching scene. A video frame has to pass four condition tests to

be eligible as a pitching scene: (i) area ratio [11] lies in the range

of 25% − 45%, (ii) lower half of the image contains more field pix-

els [11], (iii) strong valley found in the vertical profile of field pixels

[11] (as in Fig. 3 (c)) and (iv) higher intensity occurs in specific

block regions (7, 11, 10, 14 as shown in Fig.3 (d)) due to the pres-

ence of the pitcher and batter [6]. In the evaluation of this algorithm

on manulally labelled data an accuracy of 80.6% was reached.
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Fig. 3. Pitching scene detection: (a) a sample pitching scene, (b)

detected field pixels (shown in black), (c) vertical profile of the field

pixels, and (d) 16 blocks dividing the image.

3.2. Audio processing

3.2.1. Speech/non-speech classification

We use an unsupervised non-stationarity measure based speech /non-

speech classification scheme as presented in [5]. The approach is

based on a long term standard deviation calculated on Mel-filter bank

energies of the audio frames, which is sensitive to non-stationarity.

Using this measure, speech/background classification is performed

using a two mixture Gaussian mixture model. This technique yields

a classification accuracy of 80.1% across all 6 baseball game audio.

3.2.2. Excitement measurement in speech

The excitement-level classification in our current system follows the

one proposed in [5] based on the analysis of the correlation between

speech production parameters and subjectively perceived excitement

levels in commentators’ speech. In that study, recordings of com-

mentators’ speech from six baseball games were labeled by an expert

annotator into four subjective perceived excitement levels (level 1 –

no excitement, level 4 – maximum excitement) and used to train and

evaluate a binary excitement level classifier, where excitement levels

1 and 2 were grouped into a moderate excitement class and levels

3 and 4 into a high excitement class. Similarly as in [5], the cur-

rent classifier uses mean conversational turn fundamental frequency

F0, spectral center of gravity SCG, and first three formant center

frequencies F1−3 normalized by the mean and variance of their dis-

tributions found in the training set. The performance of the Gaussian

mixture model (GMM) based classifier when trained on 4 baseball

games and scored on two open test set games against the perceptual

labels reaches equal error rate (EER) of 21–22 % in a 3-turn round

robin experiment.

To estimate the Gi(t) functions for high and moderate/low ex-

citement in speech, we use the same principle used for slow motion

feature. First, we form the function Φ4(t), such that Φ4(t) = 1 if

high excitement class was detected at time instant t, and 0, other-

wise. Similarly, we form Φ5(t) for detected moderate/low excite-

ment class. These functions are shown in Fig. 4 (d) and (e). Next,

the corresponding Gi(t) functions are computed following (4). The

(a
)

Slow motion function Φ1(t)

(b
)

Motion activity function Φ2(t)

(c
)

Scene cut density Φ3(t)

(d
)

High excitement regions in speech Φ4(t)

(e
)

Low excitement regions in speech Φ5(t)

Time (min)

(f
)

Audio energy Φ6(t)

Fig. 4. A time-line view of the detected events/feature functions

Φi(t) across a 25 minute segment of a Baseball game video.

only difference here is that the function Φ5(t) is inverted before fil-

tering, following the fact that low excitement in speech is inversely

proportional to the viewer arousal.

3.2.3. Audio energy measure

For computing audio energy, a fixed audio segment size of 267 sam-

ples is used which is equivalent to our video frame-rate of 29.97
frames/sec. For each frame t, audio energy Φ6(t) is extracted and

filtered using (4) to obtain G6(t). Averaged value of G6(t) in the

k-th segment is used to compute the segmental features xi(k).

3.3. Feature fusion and excitement estimation

To generate the highlights time curve in [7], for each t, the functions

Gi(t) are filtered using a weighting function

w(t) =
1

2

(
1 + erf

(
ḠM (t)− d

σ

))
(5)

to obtain G′
i(t) = Gi(t)w(t), i = 1, . . . , D, where D = 6 is the

number of features, the choice of d = 40 and σ = 5 follows [7], and

ḠM (t) = min
i

[
sort

M
i ({Gi(t)|i = 1 · · ·D})

]
. (6)

Here sortMi provides top M values of Gi(t) at time stamp t. We use

M = 3. Finally the highlights time curve is generated as

HM (t) =

[
maxt(a(t))

maxt(ã(t)

]
ã(t) (7)

where a(t) =
∑

i ηiG
′(t), ã(t) = K(l, β) ∗ a(t) and

∑
i ηi = 1.

To estimate excitability in a segment k, we use the averaged values

of HM (t) in that segment to obtain H̄M (k).
For the proposed excitability measure, first the multi-modal

feature vector x(k) = (x1(k), x2(k) · · · xD(k)) is computed for

each segment k. Next, the histogram of the xi(k) values across all

segments of the video is used to estimate the PDFs fXi(λ). The

excitability measure ζ(k) from each segment can then be computed

using (3). For generating highlight videos, segmentation is per-

formed using the detected pitching shot locations. The proposed
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measure can then be used to rank order and combine the video seg-

ments according to the user defined highlights duration. Sample

highlights generated using the proposed technique can be found in

http://sites.google.com/site/icassp2012highlights/ .

4. SUBJECTIVE EVALUATION

In order to evaluate the effectiveness of the proposed measure of ex-

citability, we conducted a subjective evaluation involving five view-

ers familiar with the game of baseball. To make the evaluation fea-

sible, we selected 100 pitching scenes (semantic segments) of about

15 seconds duration from a baseball game. The subjects were asked

to watch the videos and rank the excitability of the scene in a scale

of 0-30. The rubrics used are: boring (0-10), moderately exciting

(10-20), and very exciting (20-30). Since the dynamic range of the

ranking scores may vary accross subjects, the scores obtained from

each subject are normalized to zero mean and unity variance, and

then averaged to obtain the final subjective measure. Note that the

normalization here does not affect the ranking order of the segments

decided by the subject, i.e., order from lowest ranking to highest

ranking ones will be preserved. Next, we extract excitement esti-

mation in the selected 100 video segments obtained from (i) H̄M (k)
computed using [7], (ii) γ(k) computed from a simple addition and

normalization of the feature parameters xi(k) [5], and (iii) the pro-

posed measure ζ(k). The measures are evaluated by comparing their

correlation and ranking agreement with the subjective measure.

From Fig. 5, we observe that all of the selected feature parame-

ters xi(k) are correlated with the subjective scores with positive val-

ues, i.e., they are proportional to excitability. The proposed excitabil-

ity measure ζ(k) is seen to have the highest correlation coefficient of

0.801, which outperforms the other two excitability measures γ(k)
and H̄M (k), yielding correlations of 0.606 and 0.702, respectively.

In each correlation value in Fig. 5, the probability of the null hy-

pothesis is p < 0.01, i.e., the correlation is significant. To evaluate

objective rank ordering of the segments, we choose N top subjec-

tively ranked video segments as a ground truth for highlights. The

excitement ranking measures H̄M (k),γ(k) and ζ(k) are then eval-

uated with respect to true positive rate (TPR) and false positive rate

(FPR). From the results summarized in Fig. 6, again the proposed

measure provides superior performance compared to [7] and [5] for

most values of N . As an example, for N = 20 the proposed tech-

nique selects 70% of the top 20 subjectively ranked segments with a

false positive rate of 7.5%, while for [7] the TPR and FPR values are

55% and 11.2%, respectively.

5. CONCLUSION

A generic video summarization scheme based on an information the-

oretic measure of excitability was presented. The proposed measure

was shown to effectively combine multi-modal features and estimate

the self-information measure in each video segment, which is propor-

tional to its excitableness. The measure was also found to be highly

correlated with a subjective evaluation of excitability in individual

video segments and outperformed well-established excitability rank-

ing methods. The proposed scheme was applied on baseball videos

to generate meaningful highlights.
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