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ABSTRACT

We investigate the use of speaker diarization (SD) and automatic
speech recognition (ASR) for the segmentation of audiovisual doc-
uments into scenes. We introduce multiple monomodal and multi-
modal approaches based on a state-of-the-art algorithm called gen-
eralized scene transition graph (GSTG). First, we extend the latter
with the use of semantic information derived from both SD and ASR.
Then, multimodal fusion of color histograms, SD and ASR is inves-
tigated at various point of the GSTG pipeline (early, late or inter-
mediate fusion). Experiments driven on a few episodes of a popular
TV show indicate that SD and ASR can be successfully combined
with visual information and bring an additional +11% relative in-
crease in terms of F1-measure for scene boundary detection over the
state-of-the-art baseline.

Index Terms— scene boundary detection, speaker diarization,
speech recognition, scene transition graph, multimodal fusion

1. INTRODUCTION

From content-based multimedia indexing to automatic video sum-
marization, most existing applications dealing with multimedia anal-
ysis rely on a preliminary step dedicated to temporal segmentation.
It is typically achieved in a hierarchical manner: consecutive video
frames are grouped into camera shots (a.k.a. shot boundary detec-
tion), then combined into higher-level semantic segments such as
stories in TV broadcast news. Semantic segmentation of videos al-
lows for easier and faster browsing in ever-growing collections. For
instance, it can be used to add chapter markers in long videos or as
the basis for automatic video summarization.

Segmentation of video into scenes gained a lot of attention
in the last decade. Methods proposed in the literature are often
domain-specific. In [1], the authors use explicit rules coming from
the audiovisual production domain to achieve segmentation into
scenes. Other approaches rely on strong a priori knowledge on the
segmented videos and will only perform well on specific type of
content (such as sports events [2] for instance). Most existing meth-
ods do not perform well on heterogeneous corpora. In particular,
scene boundary detection can be tricky for movies or TV shows
since their construction obeys to subjective (artistic) criterions.

This paper offers a complete redesign of our previous work fo-
cusing on the segmentation of TV shows into scenes [3]. Defining
the concept of a scene is a difficult problem in itself and we could
find nearly as many definitions as there are researchers working on
this very subject. Some consider that scenes have nothing to do with
semantics [4] while others assert the contrary [5]. We choose to con-

sider that a scene is composed of a set of consecutive shots with the
following properties:

Temporal continuity: a scene should describe an event in a con-
tinuous manner. A new scene should be detected for every
flashback or flashforward, for instance. Similarly, a change
in setting is usually a strong indication that time flew by be-
tween two scenes. This is a fully objective property.

Semantic coherence: this one is subjective. Even in case of tem-
poral continuity, it might happen that a completely new story
is beginning (with the introduction of a new character or an
external event for instance) at some time. When this happens,
a new scene should be detected.

Most TV shows narrate the story of a relatively small number
of recurring characters. For instance, the show called Ally McBeal
describes the every day life of a female lawyer in her thirties and her
relationships with her colleagues and friends at the law firm Cage &
Fish. Among other things, dialogues between characters are a mean
to describe and make the story evolve. Multiple stories are narrated
in parallel, describing various facets of their lives.

This is why we investigate the use of speaker diarization (SD)
and automatic speech recognition (ASR) in addition to visual cues
to achieve better segmentation results. Using both visual and audio
low-level features for scene boundary detection is not a new idea [4,
6], but as far as we know, successfully combining SD and ASR with
visual information is.

Section 2 offers a quick overview of a state-of-the-art algorithm
for scene boundary detection. Our first contribution is described in
Section 3 where we show how speaker diarization and speech recog-
nition can be used in this framework. Three multimodal fusion ap-
proaches are introduced in Section 4: they differ in how early audio
and visual sources of information are combined, in the scene bound-
ary detection process. The experimental framework is summarized
in Section 5, in which both monomodal and multimodal approaches
are evaluated. Finally, Section 6 concludes the paper.

2. SCENE BOUNDARY DETECTION

In this section, we describe the so-called scene transition graph
(STG) approach for scene boundary detection introduced in 1998
by Yeung et al. [7] and its recent extension by Sidiropoulos et al.
called generalized STG [6]. They both assume that shot boundaries
are readily available and consider scene boundary detection as the
following classification problem: ”for each shot boundary, is it
also a boundary between two scenes?” Our own monomodal and
multimodal approaches for scene boundary detection are based on
generalized STG and this assumption.
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2.1. Scene transition graph

Let us denote dij the dissimilarity of shots i and j and tij their tem-
poral distance. As will be described in Section 3, the dissimilarity of
two shots can be as simple (and low-level) as the distance between
color histograms extracted from the two shots; or may drive more
semantic information related to characters or dialogues. Assuming
i < j, the temporal distance tij is simply defined as the duration
between the end of shot i and the beginning of shot j. Dissimilarity
and temporal distance are then combined:

Dij =

{
dij if tij < Δt

+∞ otherwise
(1)

and a complete-link agglomerative clustering approach allows to
group shots together based on this new distance D. The agglom-
erative clustering ends when the distance between the two closest
clusters is higher than a threshold Δd. Overall, this process allows
to group semantically similar shots together, as long as they are not
too far away from each other in the video. In the example shown in
Figure 1, 11 consecutive shots are clustered into 5 groups using this
approach.

Fig. 1. Scene transition graph.

Consequently, the so-called scene transition graph (STG) is built
with one vertex per shot and one edge connecting each pair of con-
secutive shots. Cut-edges (that is edges whose removal splits the
whole graph into 2 disjoint connected components) are then detected
and the corresponding shot boundary is marked as a scene boundary.
In Figure 1, the edge between vertices #6 and #7 is found to be a cut-
edge. Therefore, the boundary between shots #6 and #7 is marked as
a scene boundary.

2.2. Generalized STG

Each pair of values (Δd,Δt) leads to a different set of detected
scene boundaries. The optimal values (i.e. leading to the best set
of scene boundaries) are dependent on the video. One smart way of
(partially) removing the need for fine-tuning these parameters was
proposed in [6] with the introduction of the Generalized Scene Tran-
sition Graph (GSTG). The idea is to generate a large set of STGs
by selecting random values for Δd and Δt, and keep track of the
percentage of STGs that found every shot boundary to be a scene
boundary. In Figure 2, shot boundaries with percentage p higher
than a threshold θ are marked as scene boundaries (vertical lines).

Sidiropoulos et al. found this approach to give better perfor-
mance and our own preliminary experiments confirmed this obser-
vation. Not only is it easier to fine-tune one single parameter (the
threshold θ) instead of two of them (Δd and Δt), but the GSTG
approach also gives the best (biased) optimal performance when pa-
rameters are tuned directly on the test set.

Rather than randomly selecting values for Δd and Δt, our own
implementation generates an exhaustive set of STGs using all pos-
sible pairs of values for Δd and Δt (in a predefined 2-dimensional

Fig. 2. Scene boundary probability

grid). This has the advantage over the original approach to be deter-
ministic and as such leads to reproducible results.

3. MONO-MODAL APPROACHES

In this section, we describe two novel monomodal approaches for
segmentation of videos into scenes. Both are based on the GSTG
algorithm proposed by Sidiropoulos et al. but differ on the compu-
tation of the dissimilarity between shots.

For comparison purposes and later multimodal approaches (in
Section 4), a baseline monomodal system based on HSV color his-
tograms was also implemented. Color histograms (10x10x10 bins)
are extracted every second and the dissimilarity dHSV

ij between two
shots i and j is defined as the minimum Manhattan distance between
all possible pairs of histograms from these two shots.

However, one cannot expect to solve this problem using low-
level descriptors only. Therefore, as summarized in Figure 3, aside
from the baseline HSV color histograms, we propose to use higher-
level semantic descriptors extracted from the soundtrack.

Fig. 3. Set of available modalities

3.1. Speaker diarization

Speaker diarization is the process of partitioning the audio stream
into homogeneous segments, based on the identity of the speaker.
SD timeline in Figure 3 shows an example of the output of such a
system: speech turns are detected and then labelled with a unique
speaker identifier (1, 2 or 3). Zero, one or more speakers may speak
during each shot.

In order to compute a unique dissimilarity dij between each pair
of shots (i, j), we propose to use the TF-IDF paradigm, borrowed
from the text document retrieval community. Each shot s is de-
scribed by a DSD-dimensional feature vector X(s) where DSD is the
total number of speakers in the video and Xd(s) = TFd(s) × IDFd

for d ∈ {1 . . . DSD}:
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• Inverse document frequency (IDF) is defined by IDFd =
log (N/Nd) where N is the number of shots in the video
and Nd the number of shots during which speaker d actually
speaks.

• Term-frequency (TF) is defined by TFd
s = Ld(s)/L(s)

where L(s) is the duration of shot s and Ld(s) is the speech
duration of speaker d in shot s.

The SD-based dissimilarity dSD
ij between shots i and j is defined

as the cosine distance between their respective TF-IDF feature vec-
tors.

3.2. Speech recognition

In order to bring even more semantic information to the game, we
also propose to use the output of an automatic speech recognition
(ASR) system as another complementary modality. The ASR output
is processed by TreeTagger [8] in order to extract the lemma of each
recognized word. Each shot s is then described by another DASR-
dimensional TF-IDF feature vector, where DASR is the total number
of unique lemmas recognized by the ASR system:

• Inverse document frequency (IDF) is defined by IDFd =
log (N/Md) where N is the number of shots in the video and
Md the number of shots containing at least one occurrence of
dth lemma.

• Term-frequency (TF) is defined by TFd
s = Wd(s)/W (s)

where Wd(s) is the number of occurrences of dth lemma in
shot s and W (s) is the number of words recognized in shot s.

The ASR-based dissimilarity dASR
ij between shots i and j is de-

fined as the cosine distance between their respective TF-IDF feature
vectors.

4. MULTIMODAL FUSION

In this section, we present several ways of combining the above
monomodal approaches into a (hopefully better) multimodal scene
boundary detection system. In particular, we distinguish three
approaches, differing in how early in the GSTG-based detection
pipeline the multimodal combination happens. Figure 4 summarizes
it all.

Fig. 4. Early vs. intermediate vs. late fusion

4.1. Early fusion

Early fusion is performed once dissimilarities between shots dij are
available from each combined modality. It consists in their linear
combination and can be summarized as follows:

dij = wHSV · dHSV

ij + wSD · dSD

ij + wASR · dASR

ij (2)

with wHSV +wSD +wASR = 1. As described in Section 5, a leave-one-
out cross-validation paradigm is used to estimate the best weight for
each modality.

Obviously, monomodal dissimilarities are first normalized so
that they all share a similar range of values and none of them out-
weighs the others. We investigated multiple normalization tech-
niques (min/max, z-score, TanH) but only report on the one that

proved to be the best: gaussian normalization. It consists in mod-
ifying the original distribution of dij so that it is as close as possible
to a normal distribution.

4.2. Intermediate fusion

Intermediate fusion consists in a linear combination of the scene
boundary probabilities p generated by the monomodal GSTGs. For
each shot boundary, its multimodal scene boundary probability is
defined as follows:

p = wHSV · pHSV + wSD · pSD + wASR · pASR (3)

with the same constraint on weights (wHSV +wSD +wASR = 1). This
particular approach was the one proposed by the authors of [6] –
even though they combine modalities that are different from ours.

4.3. Late fusion

We define two simple late fusion approaches: intersection ∩ and
union ∪. In intersection ∩ fusion, a shot boundary is marked as a
scene boundary if all combined monomodal approaches marked it as
one. In union ∪ fusion, it is marked as a scene boundary if at least
one monomodal approach marked it as one. These are very simple
ways of performing late fusion and will serve as baselines for the
other fusion approaches.

5. EXPERIMENTS

In order to perform experiments, we acquired the first season of
the Ally McBeal TV series. We manually annotated the first eight
episodes with shot and scene boundaries – for a total duration of
around 5 hours of videos, 5564 shots and 306 scenes. HSV color
histograms were extracted every second using the OpenCV library.
Speaker diarization and speech recognition were automatically gen-
erated using the LIMSI speaker diarization and automatic speech
recognition tools [9].

We consider the segmentation problem as a boundary detection
problem and therefore rely on precision, recall and their combination
into F1-measure. A detected boundary is correct if it has the exact
same position as a groundtruth boundary (and incorrect otherwise) –
no temporal tolerance is allowed.

Since only eight episodes are annotated, the evaluation protocol
follows the leave-one-out cross-validation paradigm. Optimal pa-
rameters (i.e. maximizing the F1-measure) are obtained by tuning
the segmentation algorithms using seven episodes (training set) and
are applied on the remaining episode (validation set) – this process
being repeated for each episode. The reported value is computed as
the average of values obtained from the eight combinations.

5.1. Mono-modal experiments

Table 1 summarizes the performance of monomodal approaches.
The baseline system – based on HSV color histograms only – ob-
tains by far the best results with an F1-measure of 0.487.

Precision Recall F1-measure # Scenes

HSV 0.447 0.566 0.487 403

SD 0.157 0.562 0.240 1136

ASR 0.105 0.572 0.175 1751

Table 1. Performance of monomodal approaches
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Both SD- and ASR-based approaches tend to detect far too many
scene boundaries (resp. 1100+ and 1700+ detected scenes when the
actual correct number is close to 300). This behavior leads to very
low precision values (resp. 0.16 and 0.10).

This can be explained by the way SD and ASR distances are
computed and is especially true for the latter. Indeed, since two
shots rarely have more than one or two words in common, their ASR
distance tends to be very close to 1. Therefore, the agglomerative
clustering process usually stops very early (depending on threshold
Δd), and generates a long scene transition graph with lots of clusters
made of only one shot (and lots of cut-edges).

5.2. Multi-modal experiments

Though SD- and ASR-based approaches have worse performance
than the HSV baseline, multimodal fusion results reported in Table 2
show they can lead to much more accurate scene detection when
combined with it.

Fusion Precision Recall F1-measure

HSV (baseline) 0.447 0.566 0.487
HSV ∩ SD 0.598 0.357 0.438
HSV ∩ SD ∩ ASR 0.606 0.242 0.341

HSV ∪ SD 0.180 0.770 0.288
HSV ∪ SD ∪ ASR 0.121 0.851 0.210

d(HSV) + d(SD) 0.445 0.599 0.499
d(HSV) + d(SD) + d(ASR) 0.445 0.599 0.499

p(HSV) + p(SD) 0.484 0.555 0.510
p(HSV) + p(SD) + p(ASR) 0.488 0.622 0.539

Table 2. Performance of fusion approaches

As expected, intersection ∩ (resp. union ∪) fusion greatly im-
proves precision (resp. recall), yet at the expense of recall (resp.
precision). If increasing the F1-measure is the objective, ∩ and ∪
late fusion approaches must be avoided.

As far as early (distance) fusion is concerned, Table 2 shows
that one can significantly improve the HSV baseline by combining
it with the one based on speaker diarization (F1-measure increases
from 0.487 to 0.499). On average, wHSV ≈ 0.9 and wSD ≈ 0.1
are the optimal weights obtained by cross-validation. Unfortunately,
adding ASR does not help as it is always given a null weight.

The fusion paradigm that gives the best result is the intermedi-
ate one. Combining HSV with SD greatly improves precision while
keeping recall at a similar level – F1-measure therefore increases
from 0.487 to 0.510, which is already better than any early or late
fusion approaches we tested. Then, adding ASR to the game signifi-
cantly improves recall (from 0.555 to 0.622). All in all, intermediate
fusion of HSV, SD and ASR gives an 11% improvement in terms of
F1-measure, up to 0.539.

6. CONCLUSIONS

We investigated the use of speaker diarization (SD) and automatic
speech recognition (ASR) for the segmentation of audiovisual doc-
uments into scenes. We introduced multiple monomodal and mul-
timodal approaches based on generalized scene transition graphs.
First, we extended the latter with the use of semantic information
derived from both SD and ASR. We found that they both tend to de-
tect far too many scene boundaries. However, we then showed that
they can efficiently be combined with visual information to improve

upon the state-of-the-art baseline. In particular, the intermediate fu-
sion approach gives the better result with a relative +11% increase
of F1-measure (+9% for precision and +9% for recall on average).

We made our best to implement the state-of-the-art GSTG ap-
proach as close to its description in [6] as possible. However, since
no standard evaluation dataset has emerged yet in the community, it
is very difficult to compare with other works. Therefore, we share
our own manual annotations for other to use1.

As far as future work is concerned, it should obviously be possi-
ble to use additional modalities that drive even more semantic infor-
mation [6] and combine them altogether at intermediate level. How-
ever, we think that we might have reached the limits of the GSTG
approach and plan on investigating other graph-based approaches.
Furthermore, segmentation into scenes is not an end in itself and we
expect to use the results presented in this paper in a larger frame-
work dedicated to automatic video summarization and semantically-
driven video browsing.
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