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ABSTRACT 

 
In this paper, we will propose a 3D model retrieval approach 
using 2D cepstral features. First, six projection planes 
representing the elevation (depth) value are generated. Then, 
2D cepstral features are extracted from each projection 
plane for searching similar 3D models. Experiments 
conducted on the Princeton Shape Benchmark (PSB) 
database have shown that the proposed 2D cepstral features 
outperforms other state-of-the-art descriptors in terms of the 
DCG score.1

The simplest features used to represent 3D models are 
based on the statistics of geometric characteristics [4]-[7]. 
Ankerst et al. proposed a method to search similar 3D 
models using shape histograms which describe the area of 
intersections of a 3D model with a collection of concentric 
shells and sectors [4]. The MPEG-7 shape spectrum 
descriptor (SSD) [5] calculates the histogram of the 
curvatures of all points on 3D surface. Osada et al. [6] used 
five geometric features, notated by A3, D1, D2, D3, and D4, 

 
 

Index Terms— 3D model retrieval, 2D cepstral feature 
 

1. INTRODUCTION 
 
The development of computer graphics and computer 
animations has made 3D models as plentiful as images and 
video. Therefore, it is necessary to design an automatic 3D 
model retrieval system which enables the users to search 
interested 3D models efficiently and effectively. The main 
challenge to a content-based 3D model retrieval system is 
how to extract representative features to effectively 
discriminate the shapes of various 3D models [1]. 

Vranic et al. applied Fourier transform to the sphere 
using spherical harmonics to generate embedded multi-
resolution 3D shape features [2]. However, pose 
normalization must be conducted prior to feature extraction 
to make the extracted feature rotation invariant. Therefore, 
Funkhouser et al. proposed a modified rotation invariant 
shape descriptor based on the spherical harmonics in which 
no pose normalization is needed [3]. 

                                                 
1  This research was supported in part by the National Science 
Council of R.O.C. under contract NSC-100-2221-E-216-035. 

to represent 3D models by the probability distributions of 
some geometric properties computed from a set of randomly 
selected points on the surface of the model. These features 
are sensitive to tessellation of 3D models. Thus, Shih et al. 
[7] proposed grid D2 (GD2) to improve D2. In GD2, a 3D 
model is first decomposed into a voxel grid. The distribution 
of distances between any two randomly selected valid grids 
is computed to represent a 3D model. 

Generally, 3D models can also be characterized by its 
2D silhouettes viewed from different directions [8]-[10] 
such that users can search similar 3D models by 2D shape 
features. Super and Lu [8] exploited 2D silhouette contours 
for 3D object recognition. Curvature and contour scale space 
features are extracted to represent each silhouette. Chen et al. 
[9] proposed the LightField descriptor (LFD) computed 
from 10 silhouettes to represent 3D models. Each silhouette 
is represented by a binary image. In fact, 2D silhouettes 
cannot describe the altitude (depth) information of 3D 
models from different views. Thus, Shih et al. [10] proposed 
the elevation descriptor (ED) to represent the altitude 
information of a 3D model from six different views. 

Kuo and Cheng [11] used principal plane analysis for 3D 
shape retrieval. The principal plane is defined as the 
symmetric plane on which the sum of distance of all points 
projected is minimal. First, each 3D model is projected onto 
its principal plane. Thus, each 3D model can be represented 
by a binary image. The feature vectors extracted from the 
binary shape image are then used for similar model retrieval. 
Typically, one projected binary image cannot represent a 
complex 3D model effectively. Therefore, Shih et al. [12] 
proposed the principal plane descriptor (PPD), in which 
three binary images are derived to describe each 3D model 
by projecting it on the principal, second, and third planes. 
Feature vectors are then extracted from these binary images. 
Vranic and Saupe proposed a modified principal component 
analysis (PCA) for pose alignment of 3D models using the 
triangle areas as weighting factors for covariance matrix 
computation [13]. The extracted features include the 
directions of 20 vertices on dodecahedron and the distances 
computed from the center point to the farthest intersections. 

In this paper, we will propose a 3D model retrieval 
method using 2D cepstral features. In Section 2, the 
proposed 3D model retrieval system will be described. 
Section 3 gives some experimental results to show the 
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effectiveness of the proposed features. Finally, conclusions 
are given in Section 4. 
 

2. PROPOSED 3D MODEL RETRIEVAL SYSTEM 
USING 2D CEPSTRAL FEATURES 

 
First, each 3D model is decomposed into a number of voxels. 
Second, the principal planes method [12] is used for pose 
alignment of each 3D model. Third, the elevation (depth) 
value of each voxel will be projected onto six viewing 
planes. Finally, 2D cepstral features extracted from these 
projection planes will be used for 3D model retrieval. 
 
2.1. 3D Model Alignment 

First, the pose of the input 3D model is aligned by the 
principal planes method [12]. The smallest bounding cube 
that circumscribes the 3D model is then decomposed into a 
voxel grid of size 128×128×128. If there is a mesh located 
within the voxel located at coordinates (x, y, z), this voxel is 
defined as an opaque voxel, denoted by V(x, y, z) = 1; 
otherwise, this voxel is defined as a transparent voxel, 
denoted by V(x, y, z) = 0. To make the extracted features 
robust to translation and scaling, we transform the 3D model 
such that its mass center becomes (0, 0, 0) and the average 
distance from all opaque voxels to the mass center is 32. 

Once the pose of a 3D model is aligned, the elevation 
(depth) value of each opaque voxel will be projected onto 
six planes indicating the six different views of the 3D model 
(see Fig. 1). The elevation value describes the distance from 
the opaque voxel to the viewing plane. Each projection 
plane is represented by a gray level image from which 2D 
cepstral features will be extracted to represent a 3D model. 
 

 
Fig. 1. The six views of a 3D model. 

 
2.2. Elevation Projection 

The elevation value can capture the depth information of the 
model’s surface to each viewing plane. For an opaque voxel 
located at (x, y, z), the elevation value is measured as its 
distance from the projection plane. Let the six projection 
planes be denoted by Ik, k = 1, 2, …, 6. Then, the gray value, 
indicating the elevation value, of each pixel on these 
projected images is computed as follows: 
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Once the six projection images are generated, 2D cepstral 
features will then be extracted from each projection image. 
 
2.3. 2D Cepstral Feature Extraction 

Fig. 2 shows the flow diagram for 2D cepstral feature 
extraction. First, 2D discrete Fourier transform (2D-DFT) of 
each 2D projection image I(x, y) is computed as follows 

 )) ,((DFT) ,( yxIvuF   (7) 

where (u, v) is 2D spectral frequency index. The 2D 
spectrum is then decomposed into M N subbands B ,  (0   

 M-1, 0    N-1) along the radial and angular directions. 
The energy of each subband is then computed as follows: 
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In this paper, two subband decomposition methods, called 
generic subband decomposition (GSD) and complement 
subband decomposition (CSD), will be employed to divide 
the 2D spectrum into several subbands (please see Fig. 3). In 
GSD, (u, v)  B ,  if 
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Fig. 2. Flow diagram for 2D cepstral feature extraction. 
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The 2D cepstrum C(p, q) can be derived by taking the 
inverse DFT of the subband energy spectrum E( , ): 

 10 ,10 )),,((DFT) ,( -1 NqMpEqpC  (13) 

where (p, q) is 2D cepstral quefrency index, DFT-1 is 2D 
inverse DFT. The magnitudes of these M N cepstral 
coefficients will constitute the 2D cepstral feature vector: 
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Fig. 3. Subband decomposition of 2D DFT spectrum (a) generic 
subband decomposition (b) complement subband decomposition 

 
In this paper, the 2D cepstral feature vectors extracted by 

using GSD and CSD techniques will be combined to search 
similar 3D models. Let TT
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extracted from the six projection planes of the query model 
corresponding to GSD and CSD techniques. Similarly, let 
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feature vectors extracted from the matching model in the 
database. The distance between the query model and the 
matching model corresponding to GSD and CSD are defined 
as follows:  
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The combined distance between the query model and the 
matching model is defined as the sum of these two distances: 

 ),(),(),( cccggg ddd yfyfyf  (17) 

The matching models that have the minimum combined 
distances will be regarded as the retrieved similar models. 
 

3. EXPERIMENTAL RESULTS 

 
To demonstrate the effectiveness of the proposed feature, 
some experiments have been conducted on the Princeton 
Shape Benchmark (PSB) database [15]. The PSB database 
contains 1814 models (161 classes) which are divided into 
907 training models (90 classes) and 907 test models (92 
classes). The discounted cumulative gain (DCG) [16], will 
be employed to compare the performance of different 
descriptors. DCG at the r-th rank is defined as follows: 
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where Lr = 1 if the r-th model in the ranked retrieval list and 
the query one belong to the same class; otherwise, Lr = 0. 
The overall DCG score for a query model is defined as 
DCGkmax, where kmax is the total number of models in the 
database. It is clear that if the models appearing in the head 
of the retrieval list have the same class label as the query one, 
a larger DCG score can be obtained. On the other hand, if 
the models with identical class label to the query one appear 
in the tail of the retrieval list, a small DCG score will be 
obtained. 

In our experiments, each model in the database will be 
presented as a query one to evaluate the average DCG score. 
Table 1 compares the retrieval results of the proposed 
descriptors with other state-of-the-art descriptors in terms of 
DCG score. In this table, 2DCEP-G(M N), 2DCEP-C(M N), 
and 2DCEP-GC(M N) denote the proposed 2D cepstral 
descriptors extracted by using GSD, CSD, and their 
combination, respectively. In this table, M and N are the 
number of decomposed segments in radial and angular 
directions. The experimental results show that 2DCEP-
GC(M N) outperforms 2DCEP-G(M N) and 2DCEP-
C(M N). In addition, (16 16) 2D subband decomposition 
outperforms (8 8) subband decomposition. Further, the 
combination of (16 16) and (8 8) subband decomposition, 
denoted by 2DCEP-GC(8 8)+2DCEP-GC(16 16), yields 
the best performance. It can also be seen that each of the 
proposed 2D cepstral descriptors outperform the other 
descriptors in terms of DCG score. 

 
4. CONCLUSIONS 

 
In this paper, 2D cepstral features are proposed for 3D 

model retrieval. First, six projection planes, represented as 
gray-level images, will be generated to describe the altitude 
(depth) value of each 3D voxel from six different views. 2D 
cepstral features are then used to extract the feature vector 
from each projection plane. Experiments on PSB database 
have shown that the proposed 2D cepstral descriptors 
outperform other state-of-the-art descriptors in terms of 
DCG score. 
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Table 1. Comparison of the proposed descriptors with other 
descriptors in terms of the DCG score (%). Note that the 
approaches marked with * are implemented by Akgul et al. [16]. 

Descriptor DCG 
SH [3] 58.35 
SSD [5] 48.07 
GD2 [7] 60.91 
LF [9] 64.30 
ED[10] 67.04 
RISH [11]* 58.40 
PPD [12] 65.86 
CRSF [14] 66.80 
DBF [16] 65.90 
DSR+DBF [16] 70.20 
AED [17] 70.29 
DED[18] 66.92 
CED[18] 68.04 
EGI [19] 43.80 
SH-GEDT [20] 58.40 
DBI [21]* 66.30 
DSR [21]* 66.50 
SIL [21]* 59.70 
SWD [22]* 65.40 
3DHT [23]* 57.70 
CAH [24]* 43.30 
REXT [25]* 60.10 
2DCEP-G(8 8) 71.26 
2DCEP-C(8 8) 70.82 
2DCEP-GC(8 8) 71.70 
2DCEP-G(16 16) 72.48 
2DCEP-C(16 16) 71.84 
2DCEP-GC(16 16) 72.63 
2DCEP-GC(8 8)+2DCEP-GC(16 16) 72.88 
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