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ABSTRACT

Mobile visual location recognition needs to be performed in real-
time for location based services to be perceived as useful. We de-
scribe and validate an approach that eliminates the network delay by
preloading partial visual vocabularies to the mobile device. Retrieval
performance is significantly increased by composing partial vocabu-
laries based on the uncertainty about the location of the client. This
way, prior knowledge is efficiently integrated into the matching pro-
cess. Based on compressed feature sets, infrequently uploaded from
the mobile device, the server estimates the client location and its un-
certainty by fusing consecutive query results using a particle filter.

Index Terms— Image Retrieval, Mobile Visual Location
Recognition, Bag-of-Features,

1. INTRODUCTION
Mobile visual location recognition aims at continuously deriving the
pose of a mobile device by matching the current camera view to a
typically large set of reference views. As GPS is hardly available in
urban canyons and indoors, visual location recognition enables lo-
cation based services (LBS) in these densely populated areas with-
out the need for complex infrastructure. The task of matching the
current recordings to a large reference database like Google Street
View [1] or Mircosoft StreetSide [2] is known as content based im-
age retrieval (CBIR), which has been an active area of research for
years. Most state-of-the-art retrieval systems base upon the bag-of-
features (BoF) approach [3, 4]. Feature descriptors are quantized to
so called visual words, e.g., using k-means, to represent an image
by a sparse visual word frequency vector. The visually most similar
images can be efficiently determined by computing the pairwise dis-
tance between query and database BoF-vectors using an inverted file
scheme.

The application of CBIR to mobile location recognition raises
new challenges when compared to mobile product recognition [5, 6].
A severe amount of clutter and dynamic objects like cars, pedestri-
ans, and advertisements can be found in both query and reference
images. Feature bundling techniques [7] may be required to include
local geometric properties into the matching process to increase dis-
tinctiveness. Due to complex 3-dimensional scenes and occlusions,
the appearance of a location may change significantly between dif-
ferent perspectives. Finally, the client-server architecture has to be
designed in a way that minimizes both the computational load as-
signed to the mobile device as well as the delay induced by the com-
munication with the server. Due to the rapidly changing field of
view of the mobile device caused by camera panning, it is essential
to achieve close to real-time query results for LBS to be perceived
as useful. On the other hand, weak prior knowledge on the loca-
tion derived from cell-ids or the last GPS localization can be always
assumed. Most importantly, however, successive query frames are
recorded in their respective vicinity.

Fig. 1. System overview illustrating the use of partial visual vocab-
ularies at the client (adapted from [6]).

Based on this assumption we aim not only at reducing the com-
putational complexity at the mobile device but also eliminate the
network delay by preloading selected reference data to the device.
By sending the most relevant data to the client using the typically
5 times faster downlink, the client can localize itself within a lim-
ited area without any communication with the server. Please note
that the general idea has already been proposed in our overview pa-
per on mobile location recognition in [6]. In this paper we validate
the approach and evaluate its performance. Additionally, we pro-
pose a particle filter based approach to estimate the client location
at the server using infrequently uploaded query feature sets. This
not only reduces the amount of data to be sent to the client but also
significantly increases the retrieval precision as prior knowledge is
efficiently integrated into the matching process.

The remainder of the paper is structured as follows. In the fol-
lowing section we discuss state-of-the-art approaches on compress-
ing the data to be transmitted to the server as well as systems to inte-
grate prior knowledge on the location. In Section 3 we introduce the
concept of partial visual vocabularies. The selection of visual words
to form partial vocabularies is discussed in Sections 3.1 and 3.2. To
evaluate the properties of the approach, the results of real world ex-
periments are described in Section 4. Finally, we conclude the paper
with an outlook to future work.

2. RELATED WORK
The delay caused by the communication between the client and the
server using a typical 3G network has been studied in [5]. The trans-
mission of 10 kB using the uplink of an indoor 3G connection takes
about 5 to 8 seconds on average depending on the signal quality.
This does not include timeouts, which happen in about 6% of the
connections.

Several approaches have been proposed to minimize the amount
of data to be transmitted to the server. Chandrasekhar et al. [8] in-
troduced a Compressed Histogram of Gradients (CHoG) descriptor,
which exploits the non-uniform distribution of gradients to describe
an image patch using only 60 bits. Hence, an image can be repre-
sented by 3-4 kB requiring approximately 3 seconds to be uploaded.

Chen et al. proposed to quantize the features on the mobile de-
vice into visual words and to compress the sparse visual word fre-
quency vector, which allows for a 5-times rate reduction with respect
to CHoG [9]. This, however, requires downloading the quantization
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structure to the mobile device, which would result in a time consum-
ing initialization or to use a generalized quantizer which would lead
to inferior the retrieval performance. Further, the quantization into a
vocabulary of about one million visual words on the mobile device
adds additional complexity and hence delay to the overall retrieval.

Recently, Ji et al. [10] proposed to integrate weak prior know-
ledge on the location to adapt the allowed set of visual word indices
to be sent to the server. Based on a generalized visual vocabulary the
subset is selected based on ground truth data of previously selected
distinctive landmarks. To distinguish among the approximately 60
landmarks per city, less than 32 bits are needed in [10] to repre-
sent an image. This approach, however, can be hardly adopted to
continuous location recognition at arbitrary query locations as rep-
resentative exemplary query images can not be generated. Further,
even with very limited amount of data to be transmitted to the server,
the roundtrip delay of about 0.3 to 0.9 s can hardly be avoided in this
client-server architecture.

3. PARTIAL VISUAL VOCABULARIES

In contrast to prior work, we exploit the typically 5 times faster
downlink to preload selected reference data to the mobile device.
This allows us to perform the localization within a limited area with-
out waiting for responses from the server.

As shown in Fig. 1, the features of every kth frame are trans-
mitted to the server. To minimize the time required to upload the
data, compressed CHoG [8] descriptors are used. Multiple vocab-
ularies, each covering an area of about 5 km2 comprising approxi-
mately 6000 panoramas, are available at the server. Based on the
weak prior knowledge the most suitable vocabulary is selected and
used to quantize the uploaded features into its visual words (typically
one million) using approximate k-means (AKM) [4]. As 500 CHoG
descriptors can be uploaded in about 3 seconds, the server can de-
termine the visually most similar panorama and thus the location of
the mobile device typically every 90th frame assuming 30 fps. With
these periodic location estimates, we can limit the reference data
required at the client to localize itself until the next server-based es-
timate to a fraction of the full vocabulary and inverted file system.

If we consider F = {f1, f2, ..., fN} to be the set of features
of one query frame and V = {v1, v2, ..., vL} to be the set of
visual words (i.e., the full vocabulary), the quantization function
qV (fi) = vj assigns each feature fi to the closest visual word vj
in the full vocabulary V . This is typically done by performing a
nearest neighbor search among all visual words. The subset of vi-
sual words, which represents a particular video frame, is defined as
Q (F |V ) = {v = qV (f)|f ∈ F} = VF ⊆ V . The result of exact
nearest neighbor quantization remains unchanged if only the subset
of visual words representing the frame itself VF = Q (F |V ) is
used instead of the full vocabulary:

Q (F |VF ) = Q (F |V ) (1)

Hence, only this part of the full vocabulary needs to be available at
the client to obtain the same results. However, this equation only
holds for a specific set of features F . A partial vocabulary VF would
need to be sent to the client for each frame. Ideally, we would like to
identify a partial vocabulary that includes the correct visual words to
process multiple consecutive frames without the need to know their
features a priori. Since VF can be extended by other subsets of the
full vocabulary (S ⊆ V ) without changing the quantization result,
as shown in Eq. 2, we can use partial vocabularies at the client that
have a sufficiently high probability of including VF .

Q (F |VF ∪ S) = Q (F |VF ) = Q (F |V ) (2)

To limit the amount of data to be transferred to the client, we seek
for the smallest partial vocabulary that includes the unknown VF for
the next video frame(s) with high probability.

3.1. Composing the partial vocabularies

While the field of view of the mobile device may change rapidly due
to the varying user attention, the location typically changes only at
a walking pace of about 1.2 m/s. Thus, visual words representing
successive frames are found with a high probability in the same ref-
erence image, i.e., a panorama, at the corresponding location, which
is periodically retrieved at the server every kth frame. As the dis-
tance between neighboring panoramas ranges between 12 to 17 m,
the visual words of two panoramas are sufficient for the client to lo-
calize itself for about 10 s. Thus, the set S in Eq. 2 is composed of
the visual words from the top ranked K panoramas retrieved by the
server and their neighboring panoramas within a radius R. While
this approach does not ensure to include the complete sets VF of
the next video frames in the partial vocabulary, this interestingly im-
proves performance as it effectively integrates prior knowledge on
the location into the quantization process at the client. Features can
only be quantized into visual words located in the area of the current
location uncertainty. Further, due to the small size of partial vocabu-
laries, the quantization of features can be performed at high rates on
the mobile device, achieving 10 fps including feature extraction on a
state-of-the-art phone.

The number of visual words to be downloaded depends on the
currently available data rate and the time until the next localization
update at the server (step size). As the visual words and their as-
sociated inverted files are progressively downloaded and added to
the quantization structure, the visual words included in the closest
panoramas are transmitted first. The radius R is set according to the
expected distance travelled until the next server update. Less time
has to be spent on downloading the visual words from neighboring
panoramas as they typically share about 20% of their visual words.

Using a partial vocabulary composed of the top ranked K
panoramas and their neighbors within a radius R yields very good
results but exploits only the information obtained from a single set of
features uploaded to the server. The area of location uncertainty can
be better estimated using a particle filter which fuses the information
obtained from consecutive query sets.

3.2. Particle Filter based partial vocabularies

By tracking multiple particles, i.e., hypotheses, on the pose and ve-
locity of the mobile device at the server, we can fuse consecutive re-
trieval results by exploiting a constant velocity model. As the client
can be assumed to have a zero centered Gaussian distributed acceler-
ation, a given maximum velocity and rate of turn, the motion model
allows us to predict possible locations until the next retrieval up-
date becomes available. Based on the state vectors of the last set of
particles, new hypotheses are generated, which are samples of the
probability density function (pdf) of the estimated client location.
In addition, single particles are added at the location of the last re-
trieved panoramas. This allows us to reduce the number of particles
and to account for distant but consistent retrieval results.

Every time a new set of features arrives at the server, the particles
are weighted according to the probability that the retrieval results are
obtained at their location. Using a ground truth dataset we learned a
pdf that specifies the probability of retrieving a given panorama at a
given distance. This pdf is specific to a given retrieval pipeline. As
subsequent updates occur typically every 5 to 25 seconds, the tem-
poral correlation of the noise in the retrieval results is small. Thus,
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Fig. 2. MAP scores for multiple partial vocabulary configurations
over the update rate (step size).

false retrieval results are ruled out by the filter as their associated
locations do not comply with the motion model. Based on this low
complexity particle filter, we can avoid time consuming geometric
verification of the retrieval results at the server.

Based on the resulting pdf over the estimated client location we
compose the partial vocabulary of visual words that best cover this
area. As we also estimate the direction of motion as well as the
velocity, significantly fewer visual words have to be transmitted to
achieve the same or better retrieval results at the client.

Further, by utilizing database statistics we identify those visual
words that provide the maximum amount of information to distin-
guish individual locations [11] and, at the same time, are most fre-
quently found at a specific location. This allows us to reduce the
number of visual words representing a panorama by at least a third
at hardly any loss in retrieval performance. This way, less than 1000
visual words are sufficient to represent a full panorama.

Visual words are represented by compressed CHoG descriptors
(60 bit) and inverted file entries are encoded differentially [9] to fur-
ther reduce the amount of data to be downloaded. On average a total
of 140 bit per new visual word and associated inverted file entries
(typically 6 in a database of 6 thousand images (5 km2) and 1 million
visual words) has to be downloaded. However, as more and more vi-
sual words are already available at the client, only their id (20 bits)
has to be transmitted to form the partial vocabulary at the client. The
data transmission will be discussed in more detail in Section 4.

4. EXPERIMENTAL EVALUATION

To evaluate the performance of our approach, we applied it to a real-
istic scenario where the client is travelling along a 650 m long track
in downtown San Francisco recording 30 fps with a resolution of
840x480 pixels. The velocity ranges between 0.5 to 1.9 m/s. Record-
ings are impaired by motion blur and a severe amount of clutter like
cars and foliage. Prior knowledge derived from Cell-IDs allows us
to select one of the overlapping 5 km2 subareas at the server which
includes 6 thousand Google Street View panoramas with an inter
panorama distance ranging from 12 to 17 m.

Every k frames (k is called step-size) features are sent from the
mobile device to the server. We extract MSER features [12] from the
least blurry frames within the last 10% of the step size. Based on the
retrieval results at the server, which employs an AKM [4] with 1 mil-
lion visual words, the partial vocabularies are formed as described in
Section 3.1. The client performs feature extraction and retrieval in
the partial vocabulary at 10 fps to continuously determine its pose
without interference by the server. Query features are matched to
the visual words using a forest of four extremely randomized kd-
trees [13] that have to be only rarely updated and downloaded from
the server. This can be done by replacing one of them at a time,
each requiring about 10kB. Visual words are continuously mounted
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Fig. 3. MAP score of the K1R40 partial vocabulary configuration at
three different data rates over the update rate (step size).

to and unmounted from the leafs of the four kd-trees to adapt the
partial vocabulary.

The retrieval and thus localization performance at the client
is measured using the well known mean average precision (MAP)
score, where all relevant panoramas have to be ranked first in the
list of retrieval results to obtain a score of 1. In the following ex-
periments we define all panoramas within a radius of 25 m around
the query location to be relevant. Ground truth has been recorded
using a state-of-the-art GPS receiver with manual post processing to
correct for errors caused by multipath effects.

In Fig. 2 we evaluate the performance of different configurations
of composing the partial vocabulary. As described in Section 3.1 K
refers to the number of top ranked panoramas and radius R defines
the maximum distance of panoramas whose visual words should be
downloaded to the client. As neighboring panoramas overlap signif-
icantly with respect to the visual words, they are transmitted before
sending the visual words of the next best ranked panorama. In this
experiment we did not limit the data rate and thus all selected visual
words are transmitted. The step size defines the number of frames
until the server receives the next set of features from the client and
updates the list of visual words to be downloaded. With increasing
step size, the knowledge about the location of the client which has to
localize itself during this time period based on the partial vocabulary
decreases. Thus, when sending only the visual words that represent
the feature set sent to the server (K0R0), the performance decreases
already at the next frame. The best performance at almost all step
sizes is achieved when sending the visual words of the best ranked
retrieval result and the neighboring panoramas within a radius of
40 m (K1R40). Even at a step size of 1000 frames, where the client
has to localize itself for 33 seconds based on one update from the
server, we achieve a MAP of 0.53 which clearly outperforms the case
when using a full vocabulary achieving a MAP of 0.34. A further in-
crease of the partial vocabulary (K3R40) reduces the integration of
prior knowledge and would ultimately lead to the performance of the
full vocabulary. When including panoramas within a radius of 40 m
the client can localize itself for about 55 m or about 1400 frames.
After this point the performance drops for all configurations.

Assuming multiple clients sharing the bandwidth of a 3G net-
work, we restrict the downlink data rate to 0.1, 0.25 and 1 Mbit/s
in Fig. 3. At larger step sizes the client has sufficient time to con-
tinuously download the visual words and to integrate them into the
retrieval system. However, for very short step sizes the rapid change
of partial vocabularies can not be transmitted at the limited data rate.
On average 9 panoramas can be found within a radius of 40 m re-
sulting in about 6000 distinctive visual words. As shown in Fig. 4,
this number of visual words only has to be transmitted if the loca-
tion estimate at the server differs significantly from the last update.
Thus, usually only the ids of the already sent visual words have to
be transmitted. Further, with increasing time the number of visual
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Fig. 5. Change in MAP for the K1R40 configuration at a data rate of
0.25 Mbit/s w.r.t. using the full vocabulary at individual frames.

words and associated inverted file entries increase which can be ob-
served in the decay of the peaks in Fig. 4. Visual words that cannot
be sent within the time of one update step might be required in the
subsequent update and need to be transmitted as can be well ob-
served when limiting the data rate to 0.1 Mbit/s.

To evaluate the performance of the approach over time we com-
pute the MAP scores using a sliding window of 100 frames and com-
pare them to the corresponding MAP scores of the full vocabulary
in Fig. 5. For most frames a significant performance improvement
can be observed. A reduced MAP score can occur when the retrieval
results of the set of features uploaded to the server were poor and
thus affect the partial vocabulary at the client.

When using the particle filter based composition of the partial
vocabulary, as described in Section 3.2, a more stable and reliable
estimate of the location can be computed at the server. This results
in an additionally improved (overall MAP of 0.65) and less varying
performance as shown in Fig. 6. Further, the number of visual words
is significantly reduced to about 3000 as the area of location uncer-
tainty is determined more precisely. This approach also facilitates
very infrequent updates by the server with a step size of more than
700 frames, which results in an overall MAP of 0.62.

5. CONCLUSION
Preloading partial visual vocabularies onto the clients using the typ-
ically 5 times faster downlink of 3G networks allows us to per-
form mobile visual localization without communication delay close
to real-time. Partial vocabularies are limited to the area of uncer-
tainty about the location of the mobile device, which can be derived
from features that are infrequently uploaded to the server. This not
only reduces the amount of data to be downloaded but also signifi-
cantly increases the retrieval performance as prior knowledge is in-
tegrated into the quantization process. Thus, the idea of partial vo-
cabularies can also be used in other applications where prior know-
ledge should be integrated. We exploit database statistics to send
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Fig. 6. Change in MAP using particle filter based partial vocabular-
ies at 0.25 Mbit/s w.r.t using the full vocabulary at individual frames.

only those visual words to the client that provide most information
about the location. Using a particle filter to fuse successive retrieval
results at the server allows us to determine the area of uncertainty
more precisely and thus increase the performance while reducing
the amount of data to be downloaded.
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