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ABSTRACT

High-level semantic information can be extracted from au-

dio materials to facilitate various content-based analysis and

context-awareness applications. In this paper, we propose

a novel automatic auditory context classification method,

which combines the characterization of audio events and the

inference of auditory context category in a single ensem-

ble analysis framework. In the proposed framework, key

audio events in the context are characterized by composite

features from discriminative representation models (local dis-

criminant bases, pseudo-semantic and bag-of-audio-words)

learned from samples. A random forest based ensemble

learning and classification model is employed for auditory

contexts, in which individual segments of audio stream are

classified and aggregated by Hough voting or bagging to form

the final context category. The effectiveness of the proposed

approach is demonstrated by the experimental results.

Index Terms— Auditory context, random forest, local

discriminant bases, MFCC, HMM

1. INTRODUCTION

Compared to visual signals, audio signals could be obtained

and used in challenging conditions such as poor lighting or

visual obstruction and are relatively more inexpensive in stor-

ing and computing, making it a common type of data in many

exciting applications. Among others, as the widely spread-

ing usage and the increasing performance for audio acquisi-

tion and computation, audio has played an important role in

enhancing the context awareness in various systems, which

imitates human’s ability of understanding the high-level se-

mantics of the auditory context. For example, given an audio

stream comprising talks, laughter, music, clashing of knives,

forks and dishes, we want a context-aware system could auto-

matically infer that it would be more probable in a restaurant,

rather than in a moving vehicle, just like an image of the same

site can give us visually.

Auditory contexts here refer to the acoustic modeling of a

specific location or site such as restaurant or bus station, while

audio events are short audio segments with distinct acoustic

patterns corresponding to specific object or event in an audi-

tory context, such as laughing or gunfire. One major difficulty

in auditory context inference, however, lies in the modeling of

large amounts of environmental sounds constituting various

audio events or background sounds. Different from common

audio data types like speech or music, which has a forman-

tic or harmonic spectral structure, environmental sounds are

usually unstructured with a broad noise-like flat spectrum and

diverse variety of signal composition. Moreover, the loose

and possibly ambiguous connections between audio events

and contexts require sophisticated modeling techniques.

Compared to general audio signal analysis that have re-

ceived long time interests in the past years, research on un-

structured environmental sound and auditory context are rel-

atively less. Eronen et al. [1] developed a system to evalu-

ate the recognition accuracy of various audio features (ZCR,

Band-energy, Spectral flux, etc.), feature transforms (PCA,

ICA, LDA), classifiers (k-NN and HMM) on 24 audio con-

texts, and compared the results with human listeners. Chu et

al. [2] proposed to use the matching pursuit (MP) algorithm

to select effective time-frequency features as the supplemen-

tation to Mel-frequency cepstral coefficients (MFCC) for au-

dio environment characterization, in which general acoustic

environment types are characterized as a whole rather than

collections of discrete audio events pre-extracted. Cai et al.

[3] modeled a set of key audio effects and several background

sounds with HMMs, and proposed a Bayesian network-based

approach to discover the high-level semantics of an auditory

context embedded in key effect sequences. In [4], a hybrid

SVM/KNN classifier is used for environmental sound classi-

fication based on MPEG-7 low-level audio descriptors.

In this paper, we propose an ensemble classification

scheme for unstructured auditory contexts, which comprises

two key ingredients: 1) the learning of discriminative feature

representations for various audio events, and 2) the learn-

ing of the mapping between features of audio segments and

the context using a random forest based ensemble classifier

framework. The block diagram of the proposed algorithm is

outlined in Fig. 1.

The remainder of the paper is organized as follows. Sec-

tion 2 describes the audio feature extraction. Section 3 de-

scribes the random forest based classification model for au-
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Fig. 1. Block diagram of the proposed auditory context clas-

sification algorithm.

ditory contexts. In Section 4, we present the experimental

results of the proposed method and some discussions.

2. FEATURE EXTRACTION

We employ a composite audio feature representation that

characterizes different aspects of the signal stream at audio

event scale. Three elementary features: the local discriminant
bases (LDB) feature, the pseudo-semantic (PSEM) feature,

and the bag-of-audio-words (BOAW) feature, are concatenat-

ed to form the feature vector for an audio signal segment. All

elementary features rely on representation models learned

from training samples of different audio event types.

2.1. Local Discriminant Bases (LDB) Feature

The LDB algorithm proposed by Saito and Coifman [5] is

one kind of ”best-basis” method to select an orthonormal opti-

mum basis or subspace from a large collection of bases, which

minimizes entropy or maximizes a certain discriminant mea-

sure among classes. Once such a basis is selected, a small

number of most significant coordinates (features) can be used

to enhance the performance of the classifier without losing

important information of the problem.

In this work, we propose a random forest based expansion

to the original LDB algorithm introduced by [6] for audio fea-

ture generation. The block diagram of our LDB algorithm is

shown in Fig. 2, in which LDB is applied on the wavelet pack-

et bases of the audio signals to identify the subspaces (i.e.

subset of nodes) that different classes show high disparity.

Briefly, in LDB, an audio stream sample xi of 2u length

is decomposed into a binary wavelet packets tree: xi =∑
j,k,l[aj,k,l]i ·wj,k,l , where j denotes the level of the tree, k

denotes the node index in level j, {wj,k,l}l=2u−j−1
l=0 are the set
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Fig. 2. Block diagram of LDB algorithm using random forest.

of wavelet packet basis vectors and aj,k,l are the basis vector

coefficients at node (j, k). To identify the best node subset

providing maximum discriminative information between P
classes, [6] computes the average dissimilarity values D(j,k)

of node (j, k) on sample subsets of all
(
P
2

)
combination of

two different signal classes, and choose QLDB nodes with

consistently (most frequently) high values of D(j,k) over mul-

tiple random subsampling trials as the selected LDB nodes.

D(j,k) can take any form of dissimilarity measurements on

values computed from the wavelet basis coefficients.

Since the essence of LDB is to evaluate the discriminabili-

ty of each node, besides the standard dissimilarity-based LDB

algorithm, we can replace the pair-wise assessment of dissim-

ilarity on individual node in [6] with the holistic variable im-

portance measurements computed by a dedicated random for-

est classifier [7] for feature selection, which is trained on the

multi-class labeled audio event samples, as shown in Fig. 2.

Specifically, for each training sample, we decompose it into a

full J-level binary wavelet packets tree, catenate all the nor-

malized energy values E(j,k) computed at every node (j, k)
to form the raw feature vector, and use it with the sample’s

class label to train the random forest classifier. After training,

the first QLDB variables (nodes) with maximum importance

are chosen as the final LDB nodes. Then, for an input audio

segment, we extract the feature values at these nodes to form

the QLDB-dim feature vector.

The intrinsic multi-scale property and the adaptive learn-

ing of feature subspace in LDB are particularly useful in de-

scribing discriminative characteristics between audio events,

which vary significantly in duration and spectral composition.

2.2. Pseudo-Semantic (PSEM) Feature

The pseudo-semantic feature is derived from a set of audio-

event-specific HMM models, representing the intermediate

characteristics between low-level physical audio features and
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high-level semantic audio events. Specifically, for each audio

event category, we extract sequences of MFCC features from

its training samples, and use them to train one HMM model

Mi (i ∈ [1, C], C is the number of event categories) that cap-

tures the timbre and rhythm characteristics of the audio event.

For an input audio segment, the extracted MFCC se-

quence is given to every HMM in {Mi}, and the set of output

likelihood values {l1, l2, . . . , lC} by the Forward algorithm

forms the C-dim PSEM feature vector.

2.3. Bag-of-Audio-Words (BOAW) Feature

The BOAW feature encodes the distribution of audio code-

words of an input audio segment against one cross-class dic-

tionary, in which the codeword is representative MFCC co-

efficients learned from samples. To build the dictionary, an

unsupervised k-means algorithm is applied on the MFCC fea-

tures extracted from all samples of all audio event categories

and after convergence the final cluster number QBOAW is

taken as the dimension of BOAW feature. The QBOAW clus-

ters constitute the codewords in the dictionary.

For an input audio segment, we initialize a QBOAW -bins

histogram HB(j) and extract a set of MFCC features {Fi}
from the signals. Next, each Fi is matched against the code-

word dictionary, and denote its distance to j-th cluster by dji
(j ∈ [1..QBOAW ]), then the j-th bin of HB is increased by

Δj = 1−dji/
∑QBOAW

n=1 dni . After all {Fi} are processed, the

normalized histogram is used as the BOAW feature.

3. AUDITORY CONTEXT CLASSIFICATION

In this section, we propose a random forest based method

for auditory context classification. The main difference of

the proposed method from other existing ones, which usual-

ly adopt a HMM-based model, is that we employ a bag-of-
event model for auditory contexts, based on the observation

that auditory contexts typically lack of obvious temporal evo-

lution characteristics of the audio events, therefore we obvi-

ate explicit modeling of temporal correlation of events at the

context level. Correspondingly, we propose an ensemble bag-

ging/voting scheme for auditory context classification, which

aggregates the class votes casted by individual segments of

the input audio stream for the potential context category.

3.1. The Random Forest Model

Random forest is a collection of decision tree classifiers, each

taking the input feature vector, classifying it and outputting

its own vote on the possible class label. The final classifica-

tion output of the whole forest is then the majority or other

integration measurements of individual votes. Compared to a

single decision tree or other simple classifier, random forest

assembles together several trees trained in a randomized way

and usually achieves superior generalization and stability.

In our work, a random forest model dedicated for context

classification is used to learn the mapping between features

of individual audio segments and their probabilistic votes on

potential categories of the auditory context. Given samples of

different auditory contexts, the training process is as follows:

1. Initialize a set of L decision trees {T1, T2, . . . , TL}
with required parameters (maximum depth, minimum

sample count per node, etc.).

2. Divide each training audio sample into sequence of seg-

ments with sufficient overlapping, and extract the com-

posite feature vector {�vi} for each segment.

3. Associate each feature vector �vi with the corresponding

auditory context class label ri (ri ∈ [1..K], K is the

number of context classes) of the training sample.

4. Join all feature vectors together to form the data

matrix [�v1, �v2, . . . , �vN ], and use it with class labels

[r1, r2, . . . , rN ] to train the random forest.

Once trained, the leaf nodes of forest trees encode the charac-

teristic features of audio segment for specific context classes.

3.2. Classification By Random Forest

Given an input audio stream with unknown context label, the

classfication using the random forest is as follows:

1. Decompose the stream into sequence of audio segments

and extract features, as in the training process.

2. Send each segment down every tree in forest and collect

the outputs at the predicted leaf node of every tree.

3. Aggregate the outputs to infer the potential auditory

context class for the input stream.

For the aggregation of the forest outputs, we can use the

Hough voting method that accumulates probabilistic votes

casted by training samples. Let Rt,l = {si|i ∈ [1..Nt,l]} is

the set of training samples stored in the l-th leaf node of the

t-th tree reached by an audio segment xj . We initialize a 1D

Hough vector HC(k) (k = 1..K), each element containing

the accumulated votes for the corresponding context class.

Then, for each sample si in Rt,l whose class is k, we add

a contribution to the bin HC(k). After all the input audio

segments {xj} are processed, the peak in HC(k) indicates

the MAP estimate for the potential context class. For higher

efficiency, an alternative and simpler bagging method can be

employed, which takes the majority class predicted by trees

as the potential context category (i.e. the target bin in HC(k))
for each input audio segment.

4. EXPERIMENTAL RESULTS

To evaluate the proposed auditory context classification

method, we collect test data for 10 auditory contexts from

Internet and some movie/TV clips, including 6 outdoor and

4 indoor contexts: auditorium, war field, forest, beach, train
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Table 1. Confusion matrix for 10 auditory contexts.

Actual Classified Contexts % (in same order as rows)

Classes 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

1. audito. 72 2 8 18

2. war 79 15 1 5

3. forest 100

4. beach 2 62 1 3 19 1 12

5. station 94 1 3 2

6. street 23 49 14 14

7. vehicle 14 66 18 2

8. playgnd 1 7 89 3

9. restau. 1 16 83

10. rain 1 99

station, street, inside vehicle, playground, restaurant and

raining. Total 21 audio event categories are considered, in-

cluding engine, car-braking, siren, horn, gun-shot, explosion,

dishware/cutlery, music, running water, bird twittering, thun-

dering, talking, applause, laughter, cheer, etc. The training

and testing set contain around 100 and 150 mono channel

audio samples, respectively, for each audio event and context

category. The typical sample length is 1-3s for audio events

and 15s-2min for contexts with 44.1kHz sampling rate.

In experiment, we use a 1s analysis window with 50%

overlapping on the audio stream for generating signal seg-

ments and extracting features. We learn a 20-dim LDB,

14-dim BOAW and 21-dim PSEM representation from audio

event samples. MFCCs are extracted from every 1024 data

points in the window. Each of the two random forest models,

one trained with audio event samples for LDB feature se-

lection and another trained with context samples for context

classification, has 30 decision trees with max depth set to 15.

Table 1 gives the confusion matrix of a typical trial of the

proposed method with the composite features on the test set.

Table 2 compares the average accuracy of the method with

different feature compositions.

The experiment results show the effectiveness of the pro-

posed random forest based framework, and combination of

several heterogeneous features incrementally enhances the

average performance. Meanwhile, as environmental auditory

contexts are typically unstructured, the proposed discrimi-

native parts-based model yields averagely higher (or compa-

rable, for some contexts) performance in experiments than

the more complicated temporal HMM context model. The

flexibility in tuning feature compositions according to the

complexity and efficiency requirements makes the frame-

work potentially applicable to a wide range of circumstances.
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Table 2. Performance of auditory context classification by us-

ing different features with the proposed random forest based

context model. ’L+P’ means the combination of LDB and

PSEM feature, ’L+P+B’ further incorporates BOAW feature.

The last column shows the results of using the MFCC fea-

tures with the proposed random forest based context model

(the first) and a HMM-based context model (the second).

Category
Average Accuracy (%)

LDB PSEM BOAW L+P L+P+B MFCC

audito. 72 70 71 72 73 72 / 73

war 78 65 63 76 79 75 / 74

forest 100 99 100 100 100 99 / 96

beach 27 44 50 53 63 45 / 47

station 89 90 85 90 93 93 / 88

street 43 38 37 52 48 45 / 58

vehicle 64 94 78 68 66 92 / 53

playgnd 87 81 73 90 90 81 / 72

restau. 83 95 85 84 84 87 / 82

rain 98 99 98 99 99 98 / 85

Average 74.3 77.7 74.2 78.6 79.7 78.5 / 72.9
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