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ABSTRACT

Depending on the tracking technology in use, a 6D motion gesture
can be tracked and represented explicitly by the position and orien-
tation or implicitly by the acceleration and angular speed. In this
work, we first present the reasoning for the definition and recogni-
tion of motion gestures. Five basic feature vectors are then derived
from the 6D motion data. Our main contribution is to investigate the
relative effectiveness of various feature dimensions for motion ges-
ture recognition in both user dependent and user independent cases.
We also propose a feature normalization procedure and prove its ef-
fectiveness in achieving “scale” invariance especially in the user in-
dependent case. Our study gives an insight into the attainable recog-
nition rate with different tracking devices.

Index Terms— Motion Gesture, Gesture Recognition, Spatio-
Temporal Features

1. INTRODUCTION

The control motion of conventional pointing devices, such as a
mouse, trackpad, and touchscreen, is limited to trajectories on a
plane. The 2D motions also form the basis of gestures on the tradi-
tional devices. With the development of tracking technologies, it is
possible to track the body motion in 3D space at an affordable price
and with good accuracy. Motion-based control is gaining popularity,
and motion gestures provide a natural and complementary modality
in human-computer interactions. Motion information beyond a 2D
trajectory, such as depth and orientation, expands the definition of
motion gestures and may improve the accuracy and robustness of
gesture recognition. In this work, we focus on motion gestures
performed by a hand or a handheld device. Tracking an object in
space actually requires six dimensions: three for translation and
three for rotation. Therefore, a 6D motion gesture is represented by
a 3D spatial trajectory and augmented by another three dimensions
of orientation.

The tracking technology in use affects the sampling rate, latency,
resolution, and accuracy of the spatio-temporal data captured from a
motion gesture. Nowadays, the most popular tracking technologies
are optical sensing and inertial sensing. The former usually tracks
the explicit 6D motion, i.e., the position and orientation in a global
reference frame. The inertial sensing actually measures the accel-
erations and angular speeds in the device-wise coordinates, which
depict the implicit 6D motion. Theoretically, it is possible to recon-
struct the spatial trajectory from the implicit 6D data with the inertial
navigation algorithm. The drifting issue and error propagation dete-
riorate the reconstruction over time and make it less accurate than the
explicit 6D motion from optical tracking. However, the implicit mo-
tion signals still contain enough information to define and recognize
the motion gestures.

A motion gesture can be viewed as a spatio-temporal pattern of
different dimensions, which depend on the tracking technology in
use. The spatial trajectory can be either 2D or 3D. The tracking re-
sults can be either implicit or explicit, with or without the orientation
information. Gesture recognition is commonly done with hidden
Markov models [1, 2, 3]. Other approaches for gesture recognition
include dynamic time warping [4], data-driven template matching
[5, 6], and feature-based statistical classifiers [7, 8, 9]. In general,
the reported recognition rates are above 90%. Since these results are
obtained with different datasets and various experimental settings, a
direct comparison of performance is not meaningful.

In our previous work [9], we presented a 6D motion gesture
database (6DMG) which contains both explicit and implicit 6D mo-
tion data in a “vocabulary” of 20 gestures. Given a motion gesture
of various tracking signals, we extracted the corresponding fixed-
length feature set for classification. The statistical features in use are
either geometric or algebraic, and they barely contain any temporal
information. We proposed a temporal extension to the feature set to
describe the motion gesture at a very coarse scale in time, e.g., the
mean values of the first half gesture. However, the overall feature
extraction process still treats the gesture more like a static pattern.
Benchmark recognition results were obtained by using a simple lin-
ear classifier on the extracted features.

In this work, we attempt to recognize 6DMG with a totally dif-
ferent approach by looking at the time series nature of the motion
gesture. Derived from different tracking signals, we represent the
motion gesture as a sequence of feature vectors (observations) and
use HMMs to model it. It is essential to understand what features
help to describe the motion gesture. We can then decide the proper
HMM structure with reasonable physical meaning. Our main con-
tribution is to investigate the relative effectiveness of various feature
dimensions in motion gesture recognition. Both user dependent and
user independent cases are addressed (in Section 4). We also show
that the normalization process is essential for robust user indepen-
dent recognition. The experimental settings are identical to our pre-
vious work [9] so that the comparison of the recognition accuracy is
fair.

We introduce the tracking devices and the motion gesture set
in the following section. In Section 3, we discuss the processes of
feature extraction and normalization. The experiments and results
are given in Section 4, and Section 5 concludes this paper.

2. 6DMG: 6D MOTION GESTURE DATABASE

We use a hybrid framework for 6D motion tracking: WorldViz PPT-
X4 for optical tracking of the position and Wii Remote Plus (Wi-
imote) for the inertial measurement of the acceleration and angular
speed. The orientation is derived from the fusion of the acceleration
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Table 1. The gesture list of 6DMG
Sample # max/min norm. ratio

Gesture Name avg. (std.) P O V W A

SwipeRight 51.9 (20.7) 8.7 5.9 14.5 12.4 24.1

SwipeLeft 51.6 (20.4) 6.4 5.0 30.3 10.8 27.4

SwipeUp 44.6 (15.5) 5.0 5.2 27.0 11.6 19.2

SwipeDown 47.2 (16.7) 4.2 7.2 46.1 21.1 29.9

SwipeUpright 45.2 (16.9) 5.4 5.6 17.7 16.6 31.7

SwipeUpleft 44.9 (17.5) 5.5 3.9 14.6 17.0 36.2

SwipeDnright 46.5 (18.8) 6.1 8.1 18.8 15.2 20.9

SwipeDnleft 47.5 (19.0) 7.2 5.2 26.2 37.8 40.3

PokeRight 70.9 (23.0) 4.2 4.5 15.4 11.2 16.5

PokeLeft 74.5 (25.1) 4.4 4.7 16.0 18.4 19.3

PokeUp 72.3 (23.4) 4.9 4.4 23.5 13.0 11.1

PokeDown 71.0 (24.9) 5.0 5.5 18.1 17.4 20.4

Vshape 71.6 (23.7) 4.4 4.9 9.7 16.0 11.4

Xshape 99.3 (28.0) 4.0 4.2 9.1 11.7 13.8

CirHorClk 104.3 (27.0) 3.5 4.2 9.0 7.3 9.1

CirHorCclk 103.1 (30.0) 3.6 4.0 9.0 10.6 7.2

CirVerClk 108.3 (33.0) 3.8 5.8 13.4 8.9 19.2

CirVerCclk 102.4 (32.0) 3.8 6.5 8.4 8.6 13.6

TwistClk 63.2 (18.9) 8.8 3.3 8.6 4.2 6.5

TwistCclk 64.5 (18.9) 11.4 2.7 6.7 4.0 10.0

and angular speed. The recorded motion data contain both explicit
and implicit spatio-temporal information sampled at 60 Hz. For ges-
ture recording, we use a push-to-gesture scheme, which allows the
user to demarcate the uni-stroke motion gesture. We consider the
imprecise segmentation as part of the variation of the gesture data.

We define a total of 20 gestures, including swiping motions in
eight directions, poke gestures that swipe rapidly forth and back in
four directions, v-shape, x-shape, clockwise or counter clockwise
circles in the vertical or horizontal plane, and wrist twisting (roll).
The names and duration statistics of the 20 gestures are listed in
Table 1. There are no “mirror” gestures, which means the direction
and rotation are the same for both right- and left-handed users.

We recruited 28 participants (21 right-handed and 7 left-handed,
22 male and 6 female) for recording. Every subject recorded each
distinct gesture 10 times, and the 6DMG database has 5600 gesture
samples in total. When recording, we advised the subject to per-
form the gesture in a consistent way, but we did not constrain his or
her gripping posture, the gesture articulation style and speed. Vari-
ations of the same gesture between individuals are expected, which
make the user independent recognition challenging. Space limita-
tions preclude the implementation and recording details of 6DMG.
The interested reader is referred to our technical report1.

3. FEATURE EXTRACTION

3.1. What Defines a Motion Gesture?

Before we do the recognition, it is important to understand what de-
fines a motion gesture. In most cases, it is the spatial trajectory that
defines the motion gesture. This basically holds true not only for
our gesture set but also for other existing gestures with 3D spatial
or gaming interactions. Exception exists when the spatial trajectory
carries little or no deterministic information. For example, the wrist

1The 6DMG database, technical paper, gesture viewer, loader, and ex-
porter are available at http://www.ece.gatech.edu/6DMG

twisting gesture is better defined by the change in orientation than
the spatial trajectory.

The spatial trajectory can be obtained directly from the position
or inferred from the fusion of acceleration and angular speed. The
velocity of the trajectory can also be meaningful. The orientation
or angular speed may contain side information to better describe the
motion gesture. From the position data, we can derive feature vectors
Po and Vo, where Po = [px, py, pz] denotes the positions offset by
the starting position, and Vo = [Δpx,Δpy,Δpz] denotes the rate of
change in the position. In 6DMG, we represent the orientation with
quaternion. Although it is easier to interpret and visualize Euler an-
gles, an Euler representation suffers from discontinuity when the an-
gle wraps around and may cause problems when modeling. We then
define another feature vector Oo = [qw, qx, qy, qz], which repre-
sents the absolute orientation. The implicit 6D motion data provide
the device-wise acceleration and angular speed, and they form the
feature vectors Ao = [ax, ay, az] and Wo = [wyaw, wpitch, wroll]
respectively. Depending on the tracking signals in use, we can de-
rive a corresponding set of features (observations) with kinematic
meanings for the HMMs.

With these features, we transform the motion gesture into a
spatio-temporal pattern. Each HMM state has the ability to capture
a subset of that pattern, i.e., a segment of the motion. Because the
motion gesture is an order-constrained time-evolving signal, the left-
right HMM topology is more suitable. Each segment of the motion
may have different time span, but it is unlikely to skip a segment
of continuous motion when rendering a gesture. Thus, we do not
consider skip transitions in the HMM topology.

3.2. Normalization

In general, people recognize a motion gesture by the path spanned
by the motion regardless of its scale or speed. Therefore, the recog-
nizer should not be affected by the scale and speed unless fast/slow
or big/small motions have different meanings in the gesture set. This
is very unlikely to happen especially in user independent systems be-
cause the definition of fast/slow or large/small motions can be vague
and different among users. To make the recognizer scale and speed
invariant, proper normalization of features is very important.

Let the upper case letters without subscripts denote the normal-
ized features. Normalization of Po, Vo, and Wo is straight forward
with linear scaling, e.g., P = sposPo. However, the scaling factor is
determined differently according to the physical meaning of the nor-
malization target. After normalization, the largest magnitude among
[px, py, pz], the largest norm of [Δpx,Δpy,Δpz], and the largest
magnitude among [wyaw, wpitch, wroll] are scaled to unit length.

We cannot rescale Ao directly because the gravity mixes up with
the motion acceleration. In [3], gravitational acceleration is compen-
sated by subtracting the mean of Ao based on the assumption that
the sensor heading is constant over the time of one recording. Ap-
parently this does not work in our case, and we have to use extra
information, i.e., the orientation, to remove the gravitational accel-
eration. Given Oo, we first convert the device-wise acceleration to
the global coordinates and subtract the constant gravity. A is then
obtained by scaling the largest norm of the extracted motion accel-
eration to unit length.

The normalization of Oo may be the most tricky one because
the quaternion cannot be “scaled” directly. First, we need to offset
(rotate) Oo by the starting orientation so that the first orientation
becomes unit quaternion. We then convert the quaternion into the
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axis-angle representation as

[qw, qx, qy, qz] =
[
cos

α

2
, rx sin

α

2
, ry sin

α

2
, rz sin

α

2

]
, (1)

where α is the angle rotated about the axis [rx, ry, rz] by the right-
hand rule. The concept here is to normalize α and keep the axis un-
touched, i.e., scale the rotation amount without changing the rotation
direction. Note that there is an important limitation of the orienta-
tion representation: the rotation direction (or angle) is not unique.
For example, rotating 1.1π and −0.9π around the same axis results
in identical orientation, so we don’t know the true rotation amount to
normalize. The ambiguity cannot be resolved unless we keep track
of the evolving orientation. Fortunately, the rotation angle in 6DMG
rarely exceeds π, so we choose to wrap α to (−π, π]. The rotation
angle is then normalized by scaling the maximum of |α| to π. When
the true rotation angle exceeds π, there must be an intermediate ori-
entation whose rotation angle crosses π. In such a case, the resulting
scaling factor of α is very close to 1, which means no rescaling. Fi-
nally, we can convert the normalized rotation angle and the original
rotation axis back to the quaternion representation of O.

The ratio of the maximum over minimum scaling factor of the
normalized features can be a good indicator for “scale” variations.
Table 1 lists the maximum to minimum ratio of each normalized
features set for every gesture in the user independent case. In gen-
eral, the ratios of P and O are much smaller than those of the time-
derivative features A, V , and W . The only exception is the ratio of
P for the twisting gestures, in which we already know the spatial
trajectory is not deterministic. In the user dependent case, the ratios
for all features basically fall under 3. Therefore, the normalization
process should be more helpful for the user independent case due to
its huge in-class variations as shown in Table 1. The reader has to
bear in mind that normalization is no elixir. The concept of scale
invariance reduces the in-class variations, but it may backfire if the
variations between classes are reduced too much at the same time.

4. EXPERIMENT SETUP AND RESULTS

In this section, we would like to verify the normalization process and
evaluate the recognition performance with different combinations of
feature sets in both user dependent and user independent cases. Al-
though different topologies can be specified per gesture according to
its complexity, we use the same topology for all gestures for gener-
ality. The experiments are done with HMMs of 4, 6, and 8 states
with single Gaussian mixture per state. We use the Hidden Markov
Model Toolkit (HTK) for HMM modeling, training, and testing.

For the user dependent recognition experiment, we train the
HMMs with 5 tokens randomly drawn from each gesture of a single
user, and use the remaining 5 tokens for testing. For cross validation,
we repeat the experiment 50 times for each of the 21 right-handed
users. For the user independent case, the training set is formed from
the gesture data of randomly selected 5 right-handed users. We then
test with the gestures of the remaining 16 right-handed users and
7 left-handed users respectively. This is equivalent to training the
recognizer in advance with only right-handers and having new right-
or left-handed users simply come in and use the system. The ex-
periment is repeated 200 times to calculate the average recognition
rate. We use the same initial seed to randomize the combination
of selected training samples so that the results are reproducible and
comparable across different settings.

4.1. Evaluation of Normalization

First, we investigate how much the normalization of these basic fea-
tures can help in both user dependent and user independent cases.
The average recognition rates are listed in Table 2. We only show
the results from HMMs of 4 states 1 Gaussian mixture and 8 states
1 Gaussian mixture. The normalization only improves slightly (and
sometimes hurts) the performance in the user dependent case, but it
has significant impact in the user independent case. This actually
confirms our expectation in Section 3.2 that the normalization helps
more when there are higher in-class variations. In the user indepen-
dent case, the time-derivative features V , W , and A benefit more
from the normalization process, which also agrees with the variation
ratios in Table 1. Note that the ratio of O only takes into account
the “scaling” of rotation angles and doesn’t include the variation of
the absolute orientation. Therefore, the large improvement of O is
partially contributed by the orientation offset (+15.0%) and the rota-
tion angle normalization (+5.9%) with 4 states 1 Gaussian mixture
HMMs. Increasing the number of states also gradually improves the
performance, but the gain is less prominent for the features that al-
ready achieve high accuracy.

4.2. Evaluation of the Combined Feature Sets

Second, we evaluate the recognition performance with different
combinations of the basic features, including the explicit spatial
3D (PV ), implicit 6D (AW ), explicit 6D (PO and PV O), and
complete 6D (PV OW ). These combinations correspond to the pos-
sible available tracking signals. The average recognition rates are
plotted in Figure 1. We also list the numbers of AW and NPO in
Table 2. In the user dependent case, over 99% accuracy is attainable
with either implicit or explicit 6D feature sets. When we combine
feature sets of different kinematic meanings together, we tie more
“constraints” on each HMM state and make it more discriminative.
However, the improvement becomes marginal at certain level, so we
stop at the feature set PV OW , which contains up to the first order
time derivative information.

In the user independent case, it’s quite interesting that the ac-
curacy of the left-handed testing set is higher than that of the right-
handed testing set even though the recognizer is trained with right-
handed users. This may be resulted from the unbalanced size of
training sets (right-handed: 16; left-handed: 7). Once we enlarge the
left-handed training set, the performance is expected to get closer to
the right-handed case. However, based on our current results, the
recognizer trained by right-handers is applicable to left-handers. We
may further assume that the recognition of motion gestures is regard-
less of handedness, which is true for our gesture set.

4.3. Comparison with Our Previous Work

The sequences of random combinations drawn for training and test-
ing sets are actually identical to our previous work [9] so that we
can make direct comparison. In [9], the recognition results are ob-
tained by using a linear classifier with extracted statistical features
of either implicit or explicit 6D motion data, which are compara-
ble to the feature set AW and PV O in the HMM case. Table 3
shows the performance comparison between the linear classifier and
the HMM-based recognizer of 8 states 1 Gaussian mixture. In the
user dependent case, the performance is almost the same. In the user
independent case, our new approach outperforms by at least 6.6%
for implicit 6D and 2.8% for explicit 6D in the absolute recognition
rate. The best attainable accuracy of PV OW is even slightly higher
than PV O.
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Table 2. The recognition rates with and without normalization (UD: user dependent case, UI.R: user independent case on right-handed users)
Po P Oo O Vo V Wo W Ao A AW PV O

UD (4 states) 95.88 96.23 97.45 96.76 97.84 97.88 96.78 97.26 97.58 97.03 98.98 99.17

UD (8 states) 97.57 97.83 98.54 97.97 98.20 98.54 97.71 98.10 98.54 98.40 99.08 99.55

UI.R (4 states) 85.13 87.38 64.42 85.32 73.64 87.65 63.75 75.40 62.15 80.33 87.30 95.12

UI.R (8 states) 88.72 88.62 72.55 88.53 82.05 91.31 69.83 80.79 71.51 88.58 91.86 96.34
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Fig. 1. The average recognition rates of combined feature sets. (a) UD: user dependent case. (b) UI.R: user independent case on right-handed
users. (c) UI.L: user independent case on left-handed users.

Table 3. The performance comparison
Implicit 6D Explicit 6D

Linear HMM Linear HMM

UD 98.80 99.08 99.59 99.55

UI.R 85.24 91.86 93.51 96.34

UI.L 78.58 95.43 96.99 98.00

5. CONCLUSION

In this work, we attempt to recognize motion gestures of both ex-
plicit and implicit 6D motion information, which includes the po-
sition and orientation in the global frame, and the acceleration and
angular speeds in the device-wise coordinates. Both user dependent
and user independent cases are addressed. In general, motion ges-
tures are defined by the spatial trajectory. This also holds true in our
gesture set with two exceptions that should be defined by the change
in orientation. From the motion data, we derive five basic feature
vectors: Po, Vo, Oo, Ao, and Wo for HMMs. Each feature vec-
tor has its own kinematic meaning and contains the clue for gesture
recognition. We also propose the normalization process to make the
feature set “scale” invariant to overcome the huge in-class variations
in the user independent recognition. Finally, we put together differ-
ent basic feature vectors and investigate the discriminating power of
the combined feature set.

Based on the results, all the five basic feature vectors are dis-
criminative to certain level. In the user dependent case, the combined
feature sets of either implicit or explicit 6D motion achieve accuracy
higher than 99%. We also show that time-derivative features have
higher variations among users and hence benefit more from the nor-
malization. With complete 6D information, the recognition rate is
above 96% in the user independent case. In the future, we hope to
replace the push-to-gesture scheme with automatic gesture spotting.
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