
VIRTUAL MIXER: REAL-TIME AUDIO MIXING ACROSS CLIENTS AND THE CLOUD
FOR MULTIPARTY CONFERENCING

Jun Liao, Chun Yuan, Wenwu Zhu, Philip A. Chou*

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing, China

*Microsoft Research, Redmond, USA

ABSTRACT
Traditional multiparty audio or video conferencing uses a
single node, sometimes called a multipoint control unit, or
MCU, to mix audio data for the conference. We introduce
a novel mixer, called a Virtual Mixer, which performs
mixing in a distributed way over the network. The Virtual
Mixer topology is optimized over Steiner trees using a
metric of either average pairwise delay (APD) or maximum
pairwise delay (MPD). Since the topology is adapted to the
particular set of clients and servers available in the cloud,
optimization speed is important. In order to solve this NP-
hard Steiner tree optimization, we propose heuristic
algorithms for finding the Pairwise-delay-optimal Tree (PT)
for both APD and MPD, which are orders of magnitude
faster than exhaustive search, yet find trees with delays that
are minimal or within a few percent of minimal. We show
through experiments both on a corporate intranet and on up
to 12 PlanetLab nodes that Virtual Mixing can reduce both
the APD and the MPD between clients by upwards of 50%,
compared with the existing MCU-based and P2P-based
mixing approaches.

Keywords—Audio Mixing, Video Mixing, Multiparty
Conferencing, Telepresence

1. INTRODUCTION

The rapid development of the Internet has enabled more
and more forms of interactive multimedia applications,
among them audio and video teleconferencing across
multiple sites. A fundamental feature of such multiparty
conferencing is the need for each endpoint in a conference
to present to its user a mixture of the audio from the other
endpoints in the conference.
In pure peer-to-peer (P2P) systems, the endpoints
communicate directly with each other, and therefore mixing
is done at the endpoints. In an -way conference, each of
the endpoints encodes and sends its audio stream to the

 other endpoints, receives and decodes audio
streams from the other endpoints, and mixes the decoded
audio streams for rendering. As grows without any
particular bound, the burden on every endpoint, in terms of
decoder computation as well as outbound and inbound
bandwidth, increases linearly for quadratic use of resources
in the overall system.
Mixing services are therefore frequently used in multiparty
conferencing. A mixer is a service that receives and
decodes streams from a collection of endpoints, creates a
unique mixture for each endpoint by leaving the endpoint’s

own stream out of the mixture, and encodes and sends the
corresponding mixture back to the endpoint. This relieves
the endpoint of the computational and bandwidth burden of
doing the mixing itself. Each endpoint needs to encode and
send only its own stream, and to receive and decode only
the mixed stream. Though we have described this here for
audio, it is also possible to have video mixers that, for
example, combine multiple H.264 video streams into a
single H.264 video stream, for decoding by a single H.264
decoder.
A mixer is typically hosted on a server in a dedicated
content delivery infrastructure. A server that hosts a mixer
is known as a Multipoint Control Unit, or MCU, in
telecommunications terminology. Classically, in the
telephone network, all of the endpoints (or “terminals”)
participating in a multipoint conference are handled by a
single MCU. This single-MCU structure is also commonly
employed by multipoint conferencing systems operating
over the Internet [2]. Although there is only a single MCU
per conference, it is not uncommon for a system to offer
multiple geographically distributed MCUs from which to
choose.
A mixer can also be hosted on one of the better endowed
endpoints in a conference, as in Skype [4]. In this case, the
mixer mixes the data from its own endpoint into each
outgoing stream. Placing the mixers at end hosts is
convenient in P2P systems. However, in many P2P
conferences, there may be no particularly well-endowed
peer to perform the mixing. A mixing scheme that rotates
the mixing responsibility evenly through the peers at a
packet level, known as MutualCast, is proposed in [3].
In this paper, we show that having not a single mixer, but a
network of mixers, which acts as a single Virtual Mixer as
shown in Figure 1, can significantly reduce the average
delay or the maximum delay between endpoints in a
conference. The reduction in delay is particularly striking
when there are multiple clusters of endpoints engaged in a
conference. This is sometimes known as the “branch office”
scenario, since participants spread across two or more
branch offices will frequently be clustered into
geographically separated groups. But the scenario also
occurs, for example, in multiparty conferences over the
Internet spanning multiple geographic regions. In this
paper, we demonstrate both in a branch office example over
a corporate intranet and in a cross-region example over the
Internet using PlanetLab that upwards of 50% reduction in
both average and maximum delay can be achieved.

2321978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

To achieve the maximum reduction in delay, the topology
of the network of mixers in the Virtual Mixer must be
optimized for each multiparty conferencing session. We
define a class of topologies based on Steiner trees, which
include all the endpoints (or clients) in the multiparty
conferencing session. The Steiner trees may also include
any number of optional helper MCUs (or servers) made
available for mixing. Any node in the interior of the
Steiner tree, whether it is a server or a client node, becomes
a mixer. Hence our approach is a hybrid of the
infrastructure-based and P2P-based mixing approaches in
previous works. We optimize over Steiner trees using as a
metric either average pairwise delay (APD) or maximum
pairwise delay (MPD) between clients. Since finding the
minimum weighted Steiner tree is an NP-hard problem, we
propose a heuristic algorithm called the Pairwise-delay-
optimal Tree (PT) algorithm. We compare PT’s APD and
MPD to the minimum APD and MPD as determined by
exhaustive search in networks containing up to 12 nodes.
For these networks, the trees found by PT have delays that
are minimal or within a few percent of minimal.
Because we are able to search quickly over trees containing
any number of optional servers, it is possible for a
multiparty conferencing system to offer a large number of
helper MCUs in many possible locations around the world.
Helper MCUs may be deployed a priori in global data
centers, in content distribution networks, on university or
corporate networks, in buildings or even in rooms that
support multiparty conferencing. When combined with the
client nodes in a particular session, these servers form a
highly effective content delivery network. However,
servers are only included if they are part of the minimum
delay topology. Thus, our Virtual Mixer suits situations
where users are clustered in a local region as well as where
users are in multiple clusters across regions. Our algorithm
optimizes the distribution topology according to the
locations of users in each session. From the clients’
perspective, as Figure 1 shows, there is only one “virtual”
mixer available to them, and they can easily access the data
streams given to them from the virtual mixer with the least
cross-region delay.
Our work is related to the MixNStream work of Yuen and
Chan [1], in which an overlay network of servers is
constructed and continually updated to support video
distribution with a small worst-case delay. In other works
on mixing, [5] presents a mixing algorithm that minimizes
the difference between generation times of the media
packets in the absence of globally synchronized clocks and
in the presence of jitter in transmission delays, [6]
investigates different types of mixing algorithms and
proposes objective methods for evaluating their
performance, and [7] proposes a simpler MCU using
algorithms for echo cancelation.

2. VIRTUAL MIXER
In this section we first introduce the graph model of the
network and the tree model of the Virtual Mixer. Then we
define the APD and MPD delay metrics. Finally, we show

how the metrics are optimized over the trees, and how trees
are dynamically chosen.
2.1 Graph Model
We define an undirected graph to model the
network of clients and all possible servers in the Virtual
Mixer. Let each node in be either a client node labeled

 or a server node labeled
. We have . We assume the graph is fully

connected, since each node can reach any other node
through a direct network connection without going through
a third node.
Not all server nodes need to be part of the Virtual Mixer.
For a graph , we define subgraphs ,

 , where each subgraph includes all
clients plus the th unique subset of the servers.
2.2 Mixing Model
For each subgraph , a spanning tree on

 is a tree connecting all vertices of . has two types
of nodes: clients in a set and servers in a set ,
so .
Each spanning tree defines a Virtual Mixer as follows. If
a node in is an interior node (i.e., not a leaf), it acts as an
MCU, as follows. When the interior node is a server with a
set of neighbors , it sends to each neighbor a
mixture of the streams from all other neighbors .
When the interior node is a client, it sends to each neighbor

 a mixture of the stream originating from itself and
from all other neighbors . When a client is a leaf, it
simply sends its own stream to its neighbor. When a server
is a leaf, it is discarded as it performs no function. No
client or server forwards more than one copy of the same
data to different nodes.
2.3 Delay Metrics
Every spanning tree , as a Virtual Mixer, can be
evaluated by a set of metrics. For any pair of client
nodes , let the pairwise delay be the
sum of the delays along the unique path in the spanning
tree from to .
We define the average pairwise delay (APD) of a spanning
tree to be the average of the pairwise delays between
clients to ,

, (1)

where . Similarly, we define the maximum
pairwise delay (MPD) of a tree to be the maximum of all
pairwise delays between clients to ,

Figure 1: Virtualize mixing resources into one virtual mixer
to conference parties.

2322

PT Algorithm
Input: A non-empty fully connected weighted graph

, a server set
Initialize:
Vnew = {x}, where x is an arbitrary node (starting point)
from , Enew = {}
Repeat until Vnew =

Choose an edge (u, v) with minimal APD/MPD
increase such that u is in Vnew and v is not (if there are
multiple edges with the same APD/MPD increase, any
of them may be selected)
Add v to Vnew, and (u, v) to Enew

For all v in Vnew
If degree of v is one and v is in server set , remove v
from Vnew and remove the edge connecting the leaf
from Enew

(2)

Among all the spanning trees in , let be a spanning
tree that has the minimum APD (or MPD). Then, among all
trees in graph , let be a tree that has the
minimum APD (or MPD). We call a pairwise delay
minimum Steiner tree in graph , with respect to APD (or
MPD).
2.4 Pairwise-delay-optimal Tree
Note that is not in general a minimum weight spanning
tree in , where the weight of a tree is defined as the sum
of the delays (or other quantities) on the edges of the tree.
Thus finding cannot be done with any of the efficient
minimum spanning tree (MST) algorithms, which rely on
the modularity of the tree weight. Unfortunately the APD
and MPD metrics, which are more relevant than tree weight
to end users, do not admit efficient minimization
algorithms. Here we propose a simple heuristic algorithm
to find the tree with minimum APD or minimum MPD,
called the Pairwise-delay-optimal Tree (PT) algorithm. The
PT algorithm actually is an algorithm suite that has two
versions, PT-APD and PT-MPD, depending on the metric
(APD or MPD) adopted, but their procedures are similar.
Here we explain how the PT algorithm finds the minimum
APD or MPD spanning tree. The output of the PT
algorithm is a spanning tree, i.e. PT. The PT algorithm
works as follows. To initialize, it builds an empty set
with zero edges. For a graph with nodes, a PT has

 edges. So the algorithm iteratively adds a new edge
to the set, by selecting the edge that yields a partial tree
with the minimum APD or MPD. That is, it selects the edge
that causes the least APD/MPD increase and adds it to the
set .
The algorithm is shown in Table 1. Note that if a Server
becomes a leaf, indicating that the server is far away from
any client node in the graph, we remove the server from the
tree. We run the PT algorithm on all possible

configurations of the servers to find , the pairwise
delay minimum Steiner tree with respect to APD (or MPD).
This is tractable since the number of servers available to
perform mixing for an audio conference is typically small.
2.5 Dynamic Group Forming
When client nodes join and leave, the tree is updated
towards a smaller APD/MPD.

3. EXPERIMENTS
3.1 Experimental Setup
To evaluate the effectiveness of our solutions, we
performed two sets of experiments. The first set is
performed over a corporate intranet in two cities across
continents, and the second is over the Internet on PlanetLab.
In both setups, we compare our PT-APD and PT-MPD
algorithms with the single mixer approach, the MutualCast
approach, and the Steiner tree with minimum APD or
minimum MPD obtained by exhaustive search. Since
exhaustive search becomes intractable as the problem
scales up, we first present how we conduct exhaust search
and pruning to reduce the search cost as much as possible.
3.1.1 Exhaustive search and tree pruning
First we calculate the number of all possible spanning trees
on a graph. Cayley's formula states that the number of
spanning trees in a complete graph with labeled vertices
is . Indeed, there is a 1-1 mapping between the set of
spanning trees and sequences over letters of length ,
known as Prüfer sequences (or Prüfer codes). Each Prüfer
sequence can be converted into a spanning tree. So a brute
force approach is to enumerate all the Prüfer sequences,
calculate the APD/MPD of the corresponding spanning tree,
and find the one that has the minimum APD/MPD.
The complexity of enumerating all Prüfer sequences is
clearly exponential. Therefore finding an optimal solution
through straightforward enumeration becomes intractable
as increases. We adopt a branch-and-bound approach in
traversing the solution space.
The exhaustive search of all possible solutions is done in a
depth-first-search way. For a given Prüfer sequence, a
corresponding spanning tree is generated node by node. In
each step, when a node is added to the tree, we evaluate its
APD or MPD. If it exceeds a pruning bound, we stop the
generating process and go to the next Prüfer sequence. The
bound is dynamically updated towards optimal during the
enumeration.
3.2 Experimental Results
3.2.1 Corporate intranet experiment
In this experiment, we have six machines: three in Asia and
three in North America. We compare the single mixer
approach, the MutualCast approach, the Virtual Mixer (PT-
MPD and PT-APD) we proposed, and exhaustive search.
Results are listed in Table 2. All delays in the table in this
paper are measured as Round Trip Delay. Figure 2 shows
the topology of the Virtual Mixer solution.
In Table 2, each row represents the topology generated by

different approaches. The last two rows are optimal
topologies obtained by enumerating all possible
configurations of spanning trees and finding the tree with

Table 1. PT algorithm to find the minimum APD/MPD

2323

Figure 2: Virtual Mixer solution in corporate intranet.

Figure 3: Virtual Mixer solution on PlanetLab.

Table 2. Comparing mixing approaches in corporate intranet.
Metric

(millisecond)

Maximum
Pairwise Delay

(MPD)

Average
Pairwise

Delay (APD)
Running Time

Single Mixing 444.021 222.043 N/A

MutualCast 443.896 166.510 N/A

Virtual Mixer
(PT-MPD) 222.109 133.272 24.23

Virtual Mixer
(PT-APD) 222.109 133.272 21.07

Minimum MPD
Tree 222.109 133.272 1877.63

Minimum APD
Tree 222.109 133.272 1889.48

Table 3. Comparing mixing approaches on PlanetLab.
Metric

(millisecond)

Maximum
Pairwise Delay

(MPD)

Average
Pairwise

Delay (APD)

Running
Time

Single Mixing 471.525 207.406 N/A

MutualCast 523.766 240.033 N/A
Virtual Mixer

(PT-MPD) 262.461 138.089 797.75

Virtual Mixer
(PT-APD) 273.268 133.387 783.60

Minimum MPD
Tree 262.461 135.747 4972683.09

Minimum APD
Tree 273.268 131.046 4894240.12

the minimum APD or MPD. In each column is the
performance of the various approaches under the two
metrics, APD and MPD. We also log the running time of
PT algorithm and exhaustive search in the last column.
From Table 2 we can see that, in the Virtual Mixer scheme,
both the APD and MPD have been reduced almost by a
factor of two compared with the other schemes. Since the
six-node case has a small enumeration space, it does not
take much time to exhaust all the possibilities. In this case,
the MPD and APD metric achieve their optima with the
same tree, but we will show in the next experiment that
they are not always so coherent.
3.2.2 PlanetLab experiment
In this experiment, we have twelve nodes spread across
Hong Kong, Taiwan, United States and Canada. We run the
same test as in Section 3.1.1, with the results shown in
Table 3. Figure 3 shows the topology of the Virtual Mixer
solution determined by PT-MPD.
In this case, there is no single tree that minimizes both APD
and MPD. However, the minimum APD tree has an MPD
only 4% larger than that of the minimum MPD tree. The
former is the tree found by PT-APD, in almost four orders
of magnitude less time.

4. CONCLUSIONS
In this paper we propose a novel Virtual Mixer that can
achieve substantial latency reduction among parties in a
conference. In order to achieve the maximum reduction in
latency, the proposed Virtual Mixer is optimized over
Steiner trees using a metric of either average pairwise delay
(APD) or maximum pairwise delay (MPD). In lieu of an
NP-hard Steiner tree optimization, we propose the greedy
Pairwise-delay-optimal Tree (PT) algorithm, which uses

either MPD or APD as the objective, respectively called
PT-MPD and PT-APD. We compare the performance of
PT-MPD and PT-APD to the minimum MPD and minimum
APD as determined by exhaustive search both in a
corporate intranet and in a Planet Lab network with up to
12 nodes. The experimental results show that the Virtual
Mixer using the trees generated by our proposed algorithms
can achieve delays that are minimal or within a few percent
of minimal. This is about half of the delay of the
traditional approaches.

5. REFERENCES
[1] Yuen, P. and Chan, G. MixNStream: multi-source video
distribution with stream mixers.In Proceedings of the 2010 ACM
workshop on Advanced video streaming techniques for peer-to-
peer networks and social networking, pages 77-82, ACM, 2010.
[2] TANDBERG MCU and IP. http://www.tandberg.com/col
lateral/white_papers/whitepaper_TANDBERG_MCU_and_IP.pdf.
[3] Li, J. MutualCast: A Serverless Peer-to-Peer Multiparty Real-
Time Audio Conferencing System., In Multimedia and Expo,
IEEE International Conference on, pages 602-605 2005.
[4] Ahson, S. and Ilyas, M. VoIP handbook: applications,
technologies, reliability, and security, pages 162-163 CRC, 2008.
[5] Rangan, P. V., Vin, H. M. and Ramanathan, S.
Communication architectures and algorithms for media mixing in
multimedia conferences. IEEE/ACM Transactions on Networking
(TON), 1, 1 1993), pages 20-30.
[6] Chandra, S. P., Senthil, K. M. and Bala, M. P. P. Audio mixer
for multi-party conferencing in VoIP., In Internet Multimedia
Services Architecture and Applications (IMSAA), pages 1-6. 2009.
[7] Junlin, L., Li-wei, H. and Florencio, D. Multi-Party Audio
Conferencing Based on a Simpler MCU and Client-Side ECHO
Cancellation. In Multimedia and Expo, 2007 IEEE International
Conference on, pages 84-87. 2007.

2324

