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ABSTRACT 
Traditional multiparty audio or video conferencing uses a 
single node, sometimes called a multipoint control unit, or 
MCU, to mix audio data for the conference.  We introduce 
a novel mixer, called a Virtual Mixer, which performs 
mixing in a distributed way over the network.  The Virtual 
Mixer topology is optimized over Steiner trees using a 
metric of either average pairwise delay (APD) or maximum 
pairwise delay (MPD). Since the topology is adapted to the 
particular set of clients and servers available in the cloud, 
optimization speed is important. In order to solve this NP-
hard Steiner tree optimization, we propose heuristic 
algorithms for finding the Pairwise-delay-optimal Tree (PT) 
for both APD and MPD, which are orders of magnitude 
faster than exhaustive search, yet find trees with delays that 
are minimal or within a few percent of minimal. We show 
through experiments both on a corporate intranet and on up 
to 12 PlanetLab nodes that Virtual Mixing can reduce both 
the APD and the MPD between clients by upwards of 50%, 
compared with the existing MCU-based and P2P-based 
mixing approaches.   
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1. INTRODUCTION 

The rapid development of the Internet has enabled more 
and more forms of interactive multimedia applications, 
among them audio and video teleconferencing across 
multiple sites.  A fundamental feature of such multiparty 
conferencing is the need for each endpoint in a conference 
to present to its user a mixture of the audio from the other 
endpoints in the conference. 
In pure peer-to-peer (P2P) systems, the endpoints 
communicate directly with each other, and therefore mixing 
is done at the endpoints.  In an -way conference, each of 
the  endpoints encodes and sends its audio stream to the 

 other endpoints, receives and decodes  audio 
streams from the other endpoints, and mixes the decoded 
audio streams for rendering.  As  grows without any 
particular bound, the burden on every endpoint, in terms of 
decoder computation as well as outbound and inbound 
bandwidth, increases linearly for quadratic use of resources 
in the overall system. 
Mixing services are therefore frequently used in multiparty 
conferencing. A mixer is a service that receives and 
decodes streams from a collection of endpoints, creates a 
unique mixture for each endpoint by leaving the endpoint’s 

own stream out of the mixture, and encodes and sends the 
corresponding mixture back to the endpoint.  This relieves 
the endpoint of the computational and bandwidth burden of 
doing the mixing itself.  Each endpoint needs to encode and 
send only its own stream, and to receive and decode only 
the mixed stream. Though we have described this here for 
audio, it is also possible to have video mixers that, for 
example, combine multiple H.264 video streams into a 
single H.264 video stream, for decoding by a single H.264 
decoder. 
A mixer is typically hosted on a server in a dedicated 
content delivery infrastructure. A server that hosts a mixer 
is known as a Multipoint Control Unit, or MCU, in 
telecommunications terminology.  Classically, in the 
telephone network, all of the endpoints (or “terminals”) 
participating in a multipoint conference are handled by a 
single MCU.  This single-MCU structure is also commonly 
employed by multipoint conferencing systems operating 
over the Internet [2].  Although there is only a single MCU 
per conference, it is not uncommon for a system to offer 
multiple geographically distributed MCUs from which to 
choose. 
A mixer can also be hosted on one of the better endowed 
endpoints in a conference, as in Skype [4].  In this case, the 
mixer mixes the data from its own endpoint into each 
outgoing stream. Placing the mixers at end hosts is 
convenient in P2P systems.  However, in many P2P 
conferences, there may be no particularly well-endowed 
peer to perform the mixing.  A mixing scheme that rotates 
the mixing responsibility evenly through the peers at a 
packet level, known as MutualCast, is proposed in [3]. 
In this paper, we show that having not a single mixer, but a 
network of mixers, which acts as a single Virtual Mixer as 
shown in Figure 1, can significantly reduce the average 
delay or the maximum delay between endpoints in a 
conference.  The reduction in delay is particularly striking 
when there are multiple clusters of endpoints engaged in a 
conference.  This is sometimes known as the “branch office” 
scenario, since participants spread across two or more 
branch offices will frequently be clustered into 
geographically separated groups.  But the scenario also 
occurs, for example, in multiparty conferences over the 
Internet spanning multiple geographic regions.  In this 
paper, we demonstrate both in a branch office example over 
a corporate intranet and in a cross-region example over the 
Internet using PlanetLab that upwards of 50% reduction in 
both average and maximum delay can be achieved. 
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To achieve the maximum reduction in delay, the topology 
of the network of mixers in the Virtual Mixer must be 
optimized for each multiparty conferencing session. We 
define a class of topologies based on Steiner trees, which 
include all the endpoints (or clients) in the multiparty 
conferencing session.  The Steiner trees may also include 
any number of optional helper MCUs (or servers) made 
available for mixing.  Any node in the interior of the 
Steiner tree, whether it is a server or a client node, becomes 
a mixer.  Hence our approach is a hybrid of the 
infrastructure-based and P2P-based mixing approaches in 
previous works. We optimize over Steiner trees using as a 
metric either average pairwise delay (APD) or maximum 
pairwise delay (MPD) between clients.  Since finding the 
minimum weighted Steiner tree is an NP-hard problem, we 
propose a heuristic algorithm called the Pairwise-delay-
optimal Tree (PT) algorithm.  We compare PT’s APD and 
MPD to the minimum APD and MPD as determined by 
exhaustive search in networks containing up to 12 nodes.  
For these networks, the trees found by PT have delays that 
are minimal or within a few percent of minimal. 
Because we are able to search quickly over trees containing 
any number of optional servers, it is possible for a 
multiparty conferencing system to offer a large number of 
helper MCUs in many possible locations around the world.  
Helper MCUs may be deployed a priori in global data 
centers, in content distribution networks, on university or 
corporate networks, in buildings or even in rooms that 
support multiparty conferencing.  When combined with the 
client nodes in a particular session, these servers form a 
highly effective content delivery network.  However, 
servers are only included if they are part of the minimum 
delay topology.  Thus, our Virtual Mixer suits situations 
where users are clustered in a local region as well as where 
users are in multiple clusters across regions.  Our algorithm 
optimizes the distribution topology according to the 
locations of users in each session.  From the clients’ 
perspective, as Figure 1 shows, there is only one “virtual” 
mixer available to them, and they can easily access the data 
streams given to them from the virtual mixer with the least 
cross-region delay. 
Our work is related to the MixNStream work of Yuen and 
Chan [1], in which an overlay network of servers is 
constructed and continually updated to support video 
distribution with a small worst-case delay.  In other works 
on mixing, [5] presents a mixing algorithm that minimizes 
the difference between generation times of the media 
packets in the absence of globally synchronized clocks and 
in the presence of jitter in transmission delays, [6] 
investigates different types of mixing algorithms and 
proposes objective methods for evaluating their 
performance, and [7] proposes a simpler MCU using 
algorithms for echo cancelation. 

2. VIRTUAL MIXER 
In this section we first introduce the graph model of the 
network and the tree model of the Virtual Mixer.  Then we 
define the APD and MPD delay metrics.  Finally, we show 

how the metrics are optimized over the trees, and how trees 
are dynamically chosen. 
2.1 Graph Model 
We define an undirected graph  to model the 
network of clients and all possible servers in the Virtual 
Mixer. Let each node in  be either a client node  labeled 

 or a server node  labeled
. We have . We assume the graph is fully 

connected, since each node can reach any other node 
through a direct network connection without going through 
a third node.  
Not all server nodes need to be part of the Virtual Mixer. 
For a graph , we define subgraphs ,

 , where each subgraph  includes all  
clients plus the th unique subset of the  servers. 
2.2 Mixing Model 
For each subgraph ,  a spanning tree  on 

 is a tree connecting all vertices of .  has two types 
of nodes: clients in a set  and servers in a set , 
so  . 
Each spanning tree  defines a Virtual Mixer as follows.  If 
a node in  is an interior node (i.e., not a leaf), it acts as an 
MCU, as follows. When the interior node is a server with a 
set of neighbors , it sends to each neighbor  a 
mixture of the streams from all other neighbors . 
When the interior node is a client, it sends to each neighbor 

 a mixture of the stream originating from itself and 
from all other neighbors . When a client is a leaf, it 
simply sends its own stream to its neighbor. When a server 
is a leaf, it is discarded as it performs no function.  No 
client or server forwards more than one copy of the same 
data to different nodes. 
2.3 Delay Metrics 
Every spanning tree , as a Virtual Mixer, can be 
evaluated by a set of metrics.  For any pair of client 
nodes , let the pairwise delay  be the 
sum of the delays along the unique path in the spanning 
tree from to . 
We define the average pairwise delay (APD) of a spanning 
tree  to be the average of the pairwise delays between 
clients to , 

,                           (1) 

where . Similarly, we define the maximum 
pairwise delay (MPD) of a tree  to be the maximum of all 
pairwise delays between clients to , 

 
Figure 1: Virtualize mixing resources into one virtual mixer 
to conference parties. 
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PT Algorithm 
Input: A non-empty fully connected weighted graph 

, a server set  
Initialize:  
Vnew = {x}, where x is an arbitrary node (starting point) 
from , Enew = {} 
Repeat until Vnew =  

Choose an edge (u, v) with minimal APD/MPD 
increase such that u is in Vnew and v is not (if there are 
multiple edges with the same APD/MPD increase, any 
of them may be selected) 
Add v to Vnew, and (u, v) to Enew 

For all v in Vnew  
If degree of v is one and v is in server set , remove v 
from Vnew and remove the edge connecting the leaf 
from Enew 

(2) 

Among all the spanning trees  in , let  be a spanning 
tree that has the minimum APD (or MPD). Then, among all 
trees  in graph , let  be a tree that has the 
minimum APD (or MPD). We call  a pairwise delay 
minimum Steiner tree in graph , with respect to APD (or 
MPD).  
2.4 Pairwise-delay-optimal  Tree 
Note that  is not in general a minimum weight spanning 
tree in , where the weight of a tree is defined as the sum 
of the delays (or other quantities) on the edges of the tree. 
Thus finding  cannot be done with any of the efficient 
minimum spanning tree (MST) algorithms, which rely on 
the modularity of the tree weight. Unfortunately the APD 
and MPD metrics, which are more relevant than tree weight 
to end users, do not admit efficient minimization 
algorithms.  Here we propose a simple heuristic algorithm 
to find the tree with minimum APD or minimum MPD, 
called the Pairwise-delay-optimal Tree (PT) algorithm. The 
PT algorithm actually is an algorithm suite that has two 
versions, PT-APD and PT-MPD, depending on the metric 
(APD or MPD) adopted, but their procedures are similar. 
Here we explain how the PT algorithm finds the minimum 
APD or MPD spanning tree. The output of the PT 
algorithm is a spanning tree, i.e. PT. The PT algorithm 
works as follows. To initialize, it builds an empty set  
with zero edges. For a graph  with  nodes, a PT has 

 edges. So the algorithm iteratively adds a new edge 
to the set, by selecting the edge that yields a partial tree  
with the minimum APD or MPD. That is, it selects the edge 
that causes the least APD/MPD increase and adds it to the 
set  . 
The algorithm is shown in Table 1. Note that if a Server 
becomes a leaf, indicating that the server is far away from 
any client node in the graph, we remove the server from the 
tree.  We run the PT algorithm on all  possible 

configurations of the  servers to find , the pairwise 
delay minimum Steiner tree with respect to APD (or MPD). 
This is tractable since the number of servers  available to 
perform mixing for an audio conference is typically small. 
2.5 Dynamic Group Forming 
When client nodes join and leave, the tree is updated 
towards a smaller APD/MPD. 

3. EXPERIMENTS 
3.1 Experimental Setup 
To evaluate the effectiveness of our solutions, we 
performed two sets of experiments. The first set is 
performed over a corporate intranet in two cities across 
continents, and the second is over the Internet on PlanetLab. 
In both setups, we compare our PT-APD and PT-MPD 
algorithms with the single mixer approach, the MutualCast 
approach, and the Steiner tree with minimum APD or 
minimum MPD obtained by exhaustive search. Since 
exhaustive search becomes intractable as the problem 
scales up, we first present how we conduct exhaust search 
and pruning to reduce the search cost as much as possible. 
3.1.1 Exhaustive search and tree pruning 
First we calculate the number of all possible spanning trees 
on a graph. Cayley's formula states that the number of 
spanning trees in a complete graph with  labeled vertices 
is . Indeed, there is a 1-1 mapping between the set of 
spanning trees and sequences over  letters of length , 
known as Prüfer sequences (or Prüfer codes). Each Prüfer 
sequence can be converted into a spanning tree. So a brute 
force approach is to enumerate all the Prüfer sequences, 
calculate the APD/MPD of the corresponding spanning tree, 
and find the one that has the minimum APD/MPD.  
The complexity of enumerating all Prüfer sequences is 
clearly exponential. Therefore finding an optimal solution 
through straightforward enumeration becomes intractable 
as  increases. We adopt a branch-and-bound approach in 
traversing the solution space.  
The exhaustive search of all possible solutions is done in a 
depth-first-search way. For a given Prüfer sequence, a 
corresponding spanning tree is generated node by node. In 
each step, when a node is added to the tree, we evaluate its 
APD or MPD. If it exceeds a pruning bound, we stop the 
generating process and go to the next Prüfer sequence. The 
bound is dynamically updated towards optimal during the 
enumeration. 
3.2 Experimental Results 
3.2.1 Corporate intranet experiment 
In this experiment, we have six machines: three in Asia and 
three in North America. We compare the single mixer 
approach, the MutualCast approach, the Virtual Mixer (PT-
MPD and PT-APD) we proposed, and exhaustive search. 
Results are listed in Table 2. All delays in the table in this 
paper are measured as Round Trip Delay. Figure 2 shows 
the topology of the Virtual Mixer solution.  
In Table 2, each row represents the topology generated by 

different approaches. The last two rows are optimal 
topologies obtained by enumerating all possible 
configurations of spanning trees and finding the tree with 

Table 1. PT algorithm to find the minimum APD/MPD 
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Figure 2: Virtual Mixer solution in corporate intranet. 

 
Figure 3: Virtual Mixer solution on PlanetLab. 

Table 2. Comparing mixing approaches in corporate intranet. 
Metric 

(millisecond) 

Maximum 
Pairwise Delay 

(MPD) 

Average 
Pairwise 

Delay (APD) 
Running Time 

Single Mixing 444.021 222.043 N/A 

MutualCast 443.896 166.510 N/A 

Virtual Mixer 
(PT-MPD) 222.109 133.272 24.23 

Virtual Mixer 
(PT-APD) 222.109 133.272 21.07 

Minimum MPD 
Tree 222.109 133.272 1877.63 

Minimum APD 
Tree 222.109 133.272 1889.48 

 

Table 3. Comparing mixing approaches on PlanetLab. 
Metric 

(millisecond) 

Maximum 
Pairwise Delay 

(MPD) 

Average 
Pairwise 

Delay (APD) 

Running 
Time 

Single Mixing 471.525 207.406 N/A 

MutualCast 523.766 240.033 N/A 
Virtual Mixer 

(PT-MPD) 262.461 138.089  797.75 

Virtual Mixer 
(PT-APD) 273.268 133.387 783.60 

Minimum MPD 
Tree 262.461 135.747 4972683.09 

Minimum APD 
Tree 273.268 131.046 4894240.12 

the minimum APD or MPD. In each column is the 
performance of the various approaches under the two 
metrics, APD and MPD. We also log the running time of 
PT algorithm and exhaustive search in the last column. 
From Table 2 we can see that, in the Virtual Mixer scheme, 
both the APD and MPD have been reduced almost by a 
factor of two compared with the other schemes. Since the 
six-node case has a small enumeration space, it does not 
take much time to exhaust all the possibilities. In this case, 
the MPD and APD metric achieve their optima with the 
same tree, but we will show in the next experiment that 
they are not always so coherent. 
3.2.2 PlanetLab experiment 
In this experiment, we have twelve nodes spread across 
Hong Kong, Taiwan, United States and Canada. We run the 
same test as in Section 3.1.1, with the results shown in 
Table 3. Figure 3 shows the topology of the Virtual Mixer 
solution determined by PT-MPD.  
In this case, there is no single tree that minimizes both APD 
and MPD. However, the minimum APD tree has an MPD 
only 4% larger than that of the minimum MPD tree.  The 
former is the tree found by PT-APD, in almost four orders 
of magnitude less time. 

4. CONCLUSIONS 
In this paper we propose a novel Virtual Mixer that can 
achieve substantial latency reduction among parties in a 
conference.  In order to achieve the maximum reduction in 
latency, the proposed Virtual Mixer is optimized over 
Steiner trees using a metric of either average pairwise delay 
(APD) or maximum pairwise delay (MPD). In lieu of an 
NP-hard Steiner tree optimization, we propose the greedy 
Pairwise-delay-optimal Tree (PT) algorithm, which uses 

either MPD or APD as the objective, respectively called 
PT-MPD and PT-APD. We compare the performance of 
PT-MPD and PT-APD to the minimum MPD and minimum 
APD as determined by exhaustive search both in a 
corporate intranet and in a Planet Lab network with up to 
12 nodes. The experimental results show that the Virtual 
Mixer using the trees generated by our proposed algorithms 
can achieve delays that are minimal or within a few percent 
of minimal.  This is about half of the delay of the 
traditional approaches.    
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