
SMART COMPOSITING: A REAL-TIME CONTENT-ADAPTIVE
BLENDING METHOD FOR REMOTE VISUAL COLLABORATION

Wei Hong April Slayden Mitchell Mitchell Trott

HP Labs, Palo Alto, California 94034

ABSTRACT

This paper proposes a content-adaptive blending method, smart com-
positing, for displaying two overlapped video frames on the same
screen while preserving the readability of both. A pixel-wise adap-
tive blending factor map is generated according to the edge and sat-
uration information of the content of only the overlay frame. Using
this blending factor map, regions of the overlay frame with edges or
saturated color are assigned to be more opaque and the remaining
regions are assigned to be more transparent. A halo is also created
around the edges of the overlay content which enhances the edges
and disambiguates them from the underlying frame. The proposed
method is suitable for overlaying many different types of content
(e.g. drawings, slides, texts, and pictures) and does not require any
information (e.g., an opacity mask) from the application which gen-
erates the content. This method has low computational complexity
and has been implemented in real-time.

Index Terms— Video compositing, content-adaptive, visual
collaboration

1. INTRODUCTION

When collaborating via video conference, a local user needs to see
both the video of the remote user and the shared content such as
drawings, slides, images, source code, and web pages, etc. In con-
ventional visual collaboration systems, the shared content and the
remote user’s video are often displayed separately or in a picture-
in-picture fashion. In recent years, a few advanced visual collab-
oration systems [1, 2] are trying to overlap them to enable correct
eye contact and gesture interaction. To preserve real-world order-
ing where shared content exists between the two users, the remote
user should appear behind the shared content on the local screen.
Thus, the video frame containing the shared content is referred as
an overlay frame, and the video frame containing the remote user is
referred as an underlying frame. When the two frames are overlaid
on the same screen, a compositing mechanism is needed to make
both of the frames naturally visible and legible to either user. If
the application which generates the content could inform the com-
positing mechanism which parts of the content are relevant and thus
should be opaque, i.e., providing an opacity mask, the compositing
can be precisely done based on the given opacity mask. However,
most existing applications do not provide such a mask, and it is not
always possible to modify existing applications to produce needed
opacity masks. Moreover, in some cases, the shared content may be
a screen capture from another computer or a video from an exter-
nal video input for which there is no way to obtain an opacity mask.
Therefore, the compositing mechanism must analyze the shared con-
tent and determine the transparency of each element of the content
without additional input. Since the shared content may be modified
any time during a remote collaboration session by either user, the

compositing mechanism must run in real-time to accommodate the
content changes.

There are several existing methods that composite two video
frames into a single frame. Alpha blending [3, 4] is the most well-
known real-time technique for compositing two frames. It simply
assumes that the overlay frame is uniformly transparent. However,
there are several drawbacks of alpha blending. The readability of
the content deteriorates because alpha blending creates ambiguity
between the overlay frame and the underlying frame. It is hard for
viewers to tell which part belongs to which frame. Also, the contrast
and color saturation of both the overlay and underlying frames de-
creases. Another real-time compositing method is intensity-adaptive
compositing [2] which sets the transparency to be proportional to the
intensity of the overlay content. It works well for content with black
backgrounds but fails for content with brighter backgrounds.

In recent years, several advanced methods have been introduced
to achieve visually better compositing results. Multiblending [5]
uses an emboss filter to find edges and blending the edges to the
underlying frame by a linear light blending function, giving over-
lay content, especially palettes, a 3D effect thus making them more
legible. This method also desaturates or remaps the color channels
of the overlay palettes and blurs the underlying regions behind the
palettes to disambiguate them. Multiblending works well for content
which consists of only edges and texts, and does not contain impor-
tant color information, e.g. palettes. For general content (e.g., im-
ages or slides), the 3D effect, desaturating, and color remapping de-
stroy the overlay content. Blurring the underlying content is also not
suitable for remote visual collaboration purpose because the gestures
and eye contact on the underlying frame need to be shown clearly to
each user and thus should not be blurred. The Free Space Trans-
parency [6, 7] requires the application to know the types of content
on the overlay and underlying frames. The content type, color, and
spatial frequency are compared between the overlay and underlying
content to determine a tile-based transparency map of the overlay
frame and whether blur and desaturation are applied on obscured re-
gions on the underlying frame. The Frame Space Transparency is
not a blind method and thus cannot be easily generalized to a variety
of content types. This tile-based method also creates a very coarse
transparency map. Similar to Multiblending, blurring and desaturat-
ing the underlying frame are also not suitable for remote visual col-
laboration purpose. EdgeTop [8] locates edges of the remote user on
the underlying frame by a Sobel edge detector and enhances these
edges by rendering them in a single color. The background of the
underlying frame is removed by a background removal algorithm.
The single-color-edge presentation of the person is very suitable for
sharing X-ray images or other monochrome images. But for gen-
eral contents, the single-color edges look unnatural and distracting.
In addition, the edge detection and background removal algorithms
cannot be fully accurate, and thus can result in holes appearing on
the remote user’s body and enhancement of false edges. All of the

2317978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Fig. 1. Flow chart of the proposed method.

above advanced compositing methods have very high computational
complexity and, therefore, are infeasible to be implemented in real-
time.

In this paper, we propose smart compositing, a compositing
method that works for any type of content (e.g. drawing, slides,
texts, and pictures) without any prior knowledge (e.g. an opacity
mask) of the content. Our method changes the transparency of every
pixel on the overlay frame based on the edge and saturation infor-
mation around that pixel. As a byproduct, a halo is created around
edges of the overlay content which enhances the edges and dis-
ambiguate them from the underlying frame. The proposed method
has low computational complexity and has been implemented in
real-time.

2. PROPOSED METHOD

The block diagram of the proposed smart compositing is shown in
Fig. 1. Ideally, both the overlay frame and the underlying frame can
be analyzed to provide information for compositing the two frames.
However, in order to minimize complexity, our method only ana-
lyzes the overlay frame which results in sufficient information for
compositing the two frames. More specifically, a pixel-wise adap-
tive blending factor map is created according to the content of only
the overlay frame. The purpose of the content-adaptive blending
factor map is to designate unused regions of the overlay frame as
more transparent and used regions as more opaque. We define used
regions as the regions with edges or vibrant (saturated) color.

2.1. Edge information extraction

First, we extract edge information from the overlay frame. We
denote the overlay frame as I1(x, y) and the underlying frame as

I2(x, y). Without loss of generality, the input and output frames of
our method are all in RGB format. The input overlay frame I1(x, y)
is converted from a RGB image to a monochrome intensity image
I(x, y) for edge detection. An edge map T(x, y) of the image
I(x, y) is created by an edge detection algorithm. Any popular edge
detection algorithm such as Canny edge detector or Sobel operator
can serve for this purpose. However, in our implementation, in order
to reduce the complexity of the edge detection, a binary-value edge
map is created by a simple edge detection algorithm described in
Eq. 1.

For each pixel in the monochrome image I(x, y), the binary
edge value is determined by comparing itself with its four surround-
ing pixels:

T(x, y) =

⎧⎨
⎩

0 if |I(x, y)− I(x− i, y − j)| ≤ ε,
∀i, j = −1, 1,

1 otherwise,
(1)

where ε is a predetermined threshold. For low computation complex-
ity purpose, only four surrounding pixels are used. If computational
resources are abundant, more surrounding pixels (diagonal pixels or
pixels farther away from the center pixel) can be used to improve the
quality of the edge map. If computational resources are scarce, only
two surrounding pixels can be used instead of the four surrounding
pixels to further reduce the computation complexity. The edge de-
tection works well for edges but may have trouble for regions with
sparse texture where holes may appear. Morphological operations,
such as dilation operation or closing operation can be applied on the
binary-value edge map T(x, y) to generate another binary-valued
edge map Tm(x, y) without or with less holes inside sparse texture
regions. Since most of the shared content (e.g. texts, slides, and
drawings) is computer-generated, it lacks sparse texture regions and
thus the morphological operation can be skipped if computational re-
sources are scarce. Even for non-computer-generated shared content
(e.g. images), holes can be avoided by choosing a small threshold ε
which is below the noise level of the image.

A low-pass filter is applied on the binary-value edge map
T(x, y) (or Tm(x, y) if a morphological operation has been ap-
plied) to create a continuous-value edge map Ts(x, y) with smooth
transitions between flat and edge regions. The low-pass filter can
be an averaging, Gaussian, or another type of filter. The size of the
filter, which is chosen empirically, controls the width of the transi-
tion regions. A larger filter size creates smoother transition but is
computationally more expensive.

The edge-adaptive blending factor map αt(x, y) is converted
from the continuous-value edge map Ts(x, y) by a piece-wise linear
mapping described as:

αt(x, y) =

{
(αt2 − αt1)Ts(x, y)/Tt + αt1, if Ts(x, y) < Tt,
αt2 otherwise,

(2)
where αt2 and αt1 are two user defined parameters for the maxi-
mum and minimum values of the edge-adaptive blending factor. Tt

is also a user defined parameter that determines at which edge value
the blending factor reaches its maximum. This mapping can be ef-
ficiently implemented by a lookup table. We choose this piece-wise
linear function for lower complexity and easier parameter control,
but other non-linear mapping functions would also work.

2.2. Saturation information extraction

In parallel with extracting the edge information, we extract satura-
tion information from the overlay frame. The input overlay frame

2318

I1(x, y) is converted from an RGB image to single-channel satura-
tion image, denoted as C(x, y). Similar to the low-pass filter ap-
plied to the binary-value edge map, a low-pass filter is also applied
on the saturation image C(x, y) to create a smoothed saturation im-
age Cs(x, y) with smooth transitions between saturated and non-
saturated regions.

Similar to the edge-adaptive blending factor map in Eq. 2, the
saturation-adaptive blending factor map αc(x, y) can be generated
as:

αc(x, y) =

{
(αc2 − αc1)Cs(x, y)/Tc + αc1, if Cs(x, y) < Tc,
αc2 otherwise,

(3)
where αc2 and αc1 are two user defined parameters for the maximum
and minimum values of the saturation-adaptive blending factor. Tc

is also a user defined parameter that determines at which saturation
level the blending factor reaches its maximum. This mapping can
also be efficiently implemented by a lookup table.

2.3. Fusion of edge and saturation information

Since we want to make the regions with either edges or saturated
color appear more opaque, we merge the edge-adaptive blending
factor map αt(x, y) and the saturation-adaptive blending factor map
αc(x, y) into the final blending factor map α(x, y) by choosing the
larger value between them pixel-wise.

α(x, y) = max(αt(x, y),αc(x, y)). (4)

The overlay frame I1(x, y) and the underlying frame I2(x, y)
are blended by the blending factor map α(x, y) to generate the out-
put frame Io(x, y).

Io(x, y) = α(x, y)I1(x, y) + (1 −α(x, y))I2(x, y). (5)

The proposed smart compositing can be used for any overlay
content (e.g. drawing, slides, texts, and pictures) because it is a pure
pixel-based approach. Since it does not require any application-
specific information (e.g., an opacity mask), existing applications
can be used with the proposed method without any modifications.

The proposed method also provides the flexibility to allow an
application to change the transparency of certain regions by adding
some random noise or dense pattern with small magnitude just above
the threshold ε to the intended regions. This approach does not need
the additional bandwidth required to carry an opacity mask and the
content change is minimal due to the small magnitude of the noise
or pattern.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed method has been tested on many different types of
content. Without loss of generality, we assume the pixel value is
between 0 and 1. In our experiments, we chose ε to be 0 to keep
all possible edges. We chose Tt to be 0.2, at1 to be 0, at2 to be
0.85, Tc to be 0.5, ac1 to be 0, and ac2 to be 0.8, based on our vi-
sual experiments to provide the best tradeoff between transparency
and clarity of the shared content in order to produce the most aes-
thetically pleasing compositing result. We skipped the morpholog-
ical operation and chose the low pass filter to be a cascade of two
5x5 averaging filters to improve performance. Since no processing
is performed on the underlying frame and only simple filters and

Fig. 2. Left: the testing overlay frame. Right: the testing underlying
frame.

operations are applied on the overlay frame, the computational com-
plexity of the proposed method is relative low making a real-time
implementation possible. Most of the signal processing tasks are im-
plemented using Intel Integrated Performance Primitives. In our per-
formance test, compositing each frame takes 20.6ms on a 3.33GHz
6-core Xeon CPU for 1280x960 resolution, which is fast enough
for a 30fps video. For many types of shared content (e.g., slides and
pictures), since the shared content changes infrequently, the blending
factor map α(x, y) can be recalculated only when the shared content
has changed in order to further reduce the computational complexity.
A simple frame comparison can be used to detect the frame changes.
The proposed method also requires low memory bandwidth because
it only relies on information from the overlay frame to calculate the
blending factor map as opposed to most of the existing advanced
compositing methods which require information from both the over-
lay and underlying frames.

In order to test the effectiveness of the proposed smart composit-
ing on different types of content, we created a testing overlay frame
containing a slide, an image, a few drawings and texts as shown on
the left of Fig. 2. The testing underlying frame shown on the right of
Fig. 2 contains a person in a typical office environment. Fig. 3 shows
the visual comparison of the results of several real-time composit-
ing methods. Fig. 3 (a) shows the result of compositing with prior
knowledge of the transparency (an opacity map) for all elements. In
this experiment, all the text, drawings, and images are 85% opaque
and all the solid color background boxes are 80% opaque which pro-
vides the best tradeoff between transparency and clarity of the shared
content. This result can be treated as the ground truth of the expected
compositing outcome as the overlay and underlying frame are both
well exposed. But in certain areas, the background may have a sim-
ilar color to that of the content over it making the content hard to
read. For example, the blue rectangle at the top left and the green
text at the bottom fade into the background color behind them in
Fig. 3 (a). Fig. 3 (b) shows the result of alpha blending with an
alpha of 0.5 to expose both the underlying and overlay frames as
much as possible. The contrast of both the overlay and underlying
frames deteriorates and everything looks washed out. Fig. 3 (c)
shows the result of intensity-adaptive compositing [2]. This method
fails for this shared content since the background of the content is not
dark. The background has to be modified to be in black to achieve a
good result. Fig. 3 (d) and (e) are the results of using only one leg
of the proposed algorithm to obtain edge-adaptive compositing and
saturation-adaptive compositing. In the edge-adaptive compositing,
solid-color boxes become skeletons which lose the containment rela-
tionship with the content inside the boxes. In the saturation-adaptive
compositing, content without color (e.g. black text at the top left
corner in Fig. 3 (e)) almost completely disappears. Fig. 3 (f) shows

2319

(a) (b) (c)

(d) (e) (f)

Fig. 3. The results of several real-time compositing methods. (a) Compositing with prior knowledge of the transparency of each element. (b)
Alpha blending. (c) Intensity-adaptive compositing. (d) Edge-adaptive compositing. (e) Saturation-adaptive compositing. (f) Proposed smart
compositing.

the result of the proposed smart compositing. The brightness, con-
trast, and color saturation of both the underlying user video and the
overlay content are almost the same as those in Fig. 3 (a). The read-
ability of the overlay frame is well preserved and even better than
in Fig. 3 (a) because a halo is created around edges of the overlay
content to enhance the edges and disambiguate them from the messy
underlying frame. As you can see in Fig. 3 (f), the blue rectangle at
the top left and the green text at the bottom stand out clearly from
the background behind.

4. CONCLUSION

In this paper, we propose smart compositing, a real-time content-
adaptive blending method, which allows both shared content and the
remote user video to be legible simultaneously. Experimental results
show that the proposed smart compositing can produce a preferred
compositing result over the result with manually assigned opacity.

5. REFERENCES

[1] J. C. Tang and S. L. Minneman, “Videodraw: a video interface
for collaborative drawing,” ACM Transactions on Information
Systems (TOIS) - Special issue on computer–human interaction,
vol. 9, pp. 170–184, 1991.

[2] K.-H. Tan, D. Gelb, R. Samadani, I. Robinson, B. Culbertson,
and J. Apostolopoulos, “Gaze awareness and interaction support
in presentations,” in Proceedings of the international conference
on Multimedia (ACM-MM ’10), Firenze, Italy, 2010, ACM, pp.
643–646.

[3] D. Stotts, J. M. Smith, and K. Gyllstrom, “Facespace: endo-
and exo-spatial hypermedia in the transparent video facetop,” in
Proceedings of the Fifteenth ACM Conference on Hypertext &
Hypermedia (HYPERTEXT ’04), Eindhoven, The Netherlands,
2004, ACM, pp. 48–57.

[4] D. Stotts, J. M. Smith, and K. Gyllstrom, “Support for dis-
tributed pair programming in the transparent video facetop,”
Lecture Notes in Computer Science, vol. 3134/2004, pp. 150–
192, 2004.

[5] P. Baudisch and C. Gutwin, “Multiblending: displaying over-
lapping windows simultaneously without the drawbacks of al-
pha blending,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’04), Vancouver,
B.C., Canada, 2004, ACM, pp. 367–374.

[6] E. W. Ishak and S. K. Feiner, “Free-space transparency: ex-
posing hidden content through unimportant screen space,” in
Proceedings of 16th Annual ACM Symposium on User Interface
Software and Technology (UIST ’03), Vancouver, B. C., Canada,
2003, ACM, pp. 75–76.

[7] E. W. Ishak and S. K. Feiner, “Interacting with hidden content
using content-aware free-space transparency,” in Proceedings
of the 17th Annual ACM Symposium on User Interface Software
and Technology (UIST ’04), Santa Fe, NM, USA, 2004, ACM,
pp. 189–192.

[8] K. Gyllstrom, D. Miller, and D. Stotts, “Techniques for improv-
ing the visibility and “sharability” of semi-transparent video in
shared workspaces,” in Proceedings of the 45th Annual South-
east Regional Conference (ACM-SE ’45), Winston-Salem, North
Carolina, USA, 2007, ACM, pp. 425–430.

2320

