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ABSTRACT 

 
The dual-core environment is more and more popular in 
embedded system recently. The limited buffer and limited 
bandwidth are critical for parallel algorithm in embedded 
system. This paper proposes a novel parallel algorithm 
using functional partitioning with dynamic load balance for 
video decoder. The video decoding flow of each 
macroblock is dynamically separated for different cores 
according to the buffer queue level. The extra 
intercommunication buffer size requires only 1.6% buffer 
size of traditional data partitioning algorithm for 720p 
decoder.  The speed-up ratio is 1.74 times in average 
compared to original single thread code. The experiment 
result shows the proposed algorithm can real-time decode 
H.264 720p high profile on ARM Cortex-A9 400MHz dual-
core system. 
 

Index Terms— parallel algorithms, video codec, 
dynamic load balance, H.264 decoder 
 

1. INTRODUCTION 
 
The multi-core system is more popular in embedded system 
recently. To improve the performance of existing single 
thread software, different parallel algorithms need to design 
according to the characteristic of different applications. 
Common issues of designing parallel algorithms include 
load balance, synchronization overhead, memory access 
contention, etc. In embedded system, the communication 
buffer size is also an important issue because the embedded 
systems are characterized by limited memory and limited 
bandwidth. 

Most existing video standard didn’t design for parallel 
computing, so the data dependencies exist in most video 
format. Several parallel algorithms using different level 
partitioning are proposed to avoid the data dependencies. 
The frame level partitioning is not suitable for the 
embedded system because the inter prediction and buffer 
size limitation. The open source FFmpeg [10] uses slice 
level partitioning. However, only MPEG-2 format is useful 
because MPEG-2 standard defines each MB row is an 

individual slice. Other video standard, such as MPEG-4, 
H.264, etc., didn’t force multiple slices within a frame. 
Unfortunately, most commercial bitstream are only one slice 
within a frame, so the slice level partitioning cannot speed-
up in a multi-core system in most cases. The macroblock 
level partitioning is more suitable for most cases, but data 
dependencies of left, top-left, top, and top-right macroblock 
should be considered. In addition, the entropy decoding 
must be in raster scan order. Those data dependencies of 
macroblock level cause the challenge of the parallel 
algorithms for video decoder. 

The parallel algorithms using macroblock level can be 
broadly divided into three different partitioning categories: 
functional partitioning, data partitioning and mixed 
partitioning [1]. The functional partitioning takes each 
thread as a distinct function in a pipelined fashion, and 
communicates between tasks in an explicit way. The data 
partitioning use different threads to execute the same 
function for different parts of input data simultaneously. 
The mixed partitioning combines the functional partitioning 
and data partitioning, and processes functional parallelism at 
coarse granularity and applies data parallelism inside those 
granularities. In embedded system, the major problem of 
data partitioning [6], [7] and mixed partitioning [8], [9] is 
the communication buffer size. The data partitioning needs 
a VLD buffer in double whole frame size because each 
VLD coefficient needs two bytes to store. The mixed 
partitioning needs more communication buffer including a 
VLD buffer and a prediction buffer in triple whole frame 
size. 

For functional partitioning, Seitner et al. [2], [3] divide 
the video decoder functionality into a parsing part and a 
reconstruction part for dual-core environment. A high level 
simulation is proposed to estimate the performance. Y. Kim 
et al. [4] propose dynamic load balance in functional 
partitioning, which off-load the motion compensation to 
another core if the previous macroblock is in bi-directional 
inter prediction mode. However, quarter frame buffer size is 
required for their pipeline structure. M. Kim et al. [5] 
propose dynamic load balancing method for the functional 
partitioning to their own dual-core DSP. Their whole system 
consists of the dual-core DSP, VLD hardware, MC 
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hardware, deblocking hardware and a SDRAM. So, the 
dual-core DSP handle only few parts of video decoder flow. 
The first DSP core can offload inverse 
transformation/quantization for intra macroblock or 
boundary strength calculation for inter macroblock from 
second DSP core if the communication buffer level is larger 
than threshold. In this paper, we propose a novel functional 
partitioning algorithm using dynamic load balance for pure 
software video decoder. The intercommunication buffer is 
to communicate between dual cores, and requires only 32 
macroblock for 720p decoder, which is less than 2% buffer 
size of the data partitioning and the mixed partitioning. 
 

2. FUNCATIONAL PARTITIONING WITH 
DYNAMIC LOAD BALANCE 

 
The main idea of the proposed algorithm is that the video 
decoding flow of each macroblock is dynamically separated 
for different cores according to the communication buffer 
level. The separation should consider the data dependencies 
of different sub-module in different macroblock. Section 2.2 
describes the algorithm to avoid the data dependencies 
when separating the decoding flow. 
 
2.1. The proposed decoding flow 
 
The video decoding flow can be divided into four sub-
module: entropy decoding (VLD), inverse quantization and 
transformation part (IQ/IT), prediction (PRED) and 
deblocking (DBK). In dual-core system, it’s intuitive to 
have three different ways for fixed functional partitioning, 
as shown in Fig. 1 (a)~(c). However, the executed time of 
each sub-module is variable according to the input bitstream. 
The fixed functional partitioning will face the load 
imbalance of different cores. 

Dynamic load balance is one of the best approaches to 
solve the load imbalance. For dual core, Fig. 2 shows the 
combination of three different partitioning ways from Fig. 
1(a)~(c). The CPU 0 can dynamically select one of the three 
partitioning ways for each macroblock according to the 
buffer queue level. When the queue level is low or empty, 

CPU 0 needs to finish the job quickly and send it to the 
queue to avoid CPU 1 waiting for queue. On the other hand, 
when the queue level is high, it means the CPU 1 is too 
busy, so the CPU 0 can do more to offload the job from 
CPU 1. 

The buffer queue is for sending the data and information 
from CPU 0 to CPU 1. Each buffer queue slot includes a 
flag, macroblock header information and the macroblock 
data. The CPU 1 read the flag to know what is the 
partitioning of this macroblock by CPU 0. The macroblock 
data can be the result of VLD or IT or PRED according to 
the flag. The PRED result from CPU 0 can also put to 
output buffer directly. In our implementation, the buffer size 
of each queue slot is 1420 bytes. 

The size of buffer queue should be less than a 
macroblock row so that the data dependencies need not to 
check to reduce synchronization overhead. That is, the small 
queue size can ensure top-left, top and top-right macroblock 
are already done when queue is available to push or pop. 
Another advantage of the small queue size is to reduce the 
external memory bandwidth and latency, which is important 
especially in embedded system. That is, the whole buffer 
queue can be hold inside L1/L2 cache so the data 
communication between two CPUs is via hardware cache 
coherence. In our implementation, the queue size is 32 
macroblock for 720p decoder, and the total communication 
buffer size requires only 44.4 Kbytes. The extra required 
buffer size is quite small when comparing with other 
parallel algorithms. For 720p decoding, the data partitioning 
[6] and mixed partitioning [8], [9] require 2.64 Mbytes and 
3.96 Mbytes respectively. So, the buffer size of the 
proposed algorithm for 720p decoder is 1.6% and 1.0% 
buffer size of data partitioning and mixed partitioning 
respectively. 
 
2.2. Partitioning for prediction data dependencies 
 
The proposed dynamic partitioning algorithm has large 
scalability for each core. That is, the CPU 0 can do from 
VLD only to VLD/IQ/IT/PRED, and the CPU 1 can do from 
IQ/IT/PRED/DBK to DBK only. Most previous works of 
dynamic load balance in video decoder only offload a small 
function. For example, parts of motion compensation are 
divided to other core for dynamic load balance in [4]. IQ/IT 
for intra macroblock or boundary strength calculation for 
inter macroblock are offloaded to other core for dynamic 
load balance in [5]. The advantage of our large scalability of 

  (a) 

  (b) 

  (c) 
Fig. 1. (a)~(c) Three kinds of different fixed functional 
partitioning for dual-core system 

Fig. 2. Functional partitioning with dynamic load balance 
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dynamic partitioning is the load balance for different kinds 
of input bitstream. However, the large scalable partitioning 
has several data dependencies especial in PRED sub-module. 

First, to decouple VLD with other sub-module, the 
motion vector prediction and intra mode prediction should 
be calculated together with VLD. This is because the results 
needs by VLD sub-module for next macroblock. As a result, 
VLD sub-module in CPU 0 can go ahead and doesn’t care if 
the prediction of left macroblock is done or not. 

Next, the intra prediction needs to reference the PRED 
result of top macroblock row before DBK. Fig. 3 (a) shows 
one method that the DBK always delay one macroblock row, 
and Fig. 3 (b) shows another method that the PRED backup 
one pixel row of top macroblock row before doing DBK. In 
this case, the DBK has to always delay only one macroblock 
because the intra prediction also needs to reference the 
PRED result of left macroblock. In our implementation, we 
use the later one because our experiment shows the later one 
perform slight better. 

Finally, because the intra prediction needs to reference 
the PRED result of left macroblock, the partitioning 
criterion should make sure the PRED of left macroblock and 
current intra macroblock run in the same CPU. On the other 
word, if CPU 1 does PRED of left macroblock and CPU 0 
does PRED of current macroblock in intra prediction, the 
CPU 0 needs to check if left macroblock is done from CPU1. 
To reduce the synchronization overhead, once CPU 0 
partition PRED to CPU 1, the PRED of residual right 
macroblock in the same macroblock row needs also to 
partition to CPU 1 if the macroblock is in intra. The inter 
macroblock has no this limitation, and can be partitioned 
into different CPUs according to queue level. 

Fig. 4 shows the queue level threshold of the dynamic 
functional partitioning. For inter macroblock, CPU 0 will do 
VLD only if the queue level is less than 1/3 queue size, and 
do VLD/IQ/IT if the queue level is within 1/3~2/3 queue 
size, and do VLD/IQ/IT/PRED if the queue level is larger 
than 2/3 queue size. For intra macroblock, the threshold 
moves from 2/3 to 1/2 for PRED to keep more PRED in 

CPU 0 if the queue level is higher than 1/2. Fig. 4 (c) shows 
once PRED is assigned by CPU1, CPU 0 never does PRED 
in the same macroblock row for intra macroblock. 
 

3. EXPERIMENTAL RESULTS 
 
The experiments run on the ARM Versatile Express 
platform [11], which including Cortex-A9 quad-core with 
NEON. Table 1 shows the detail specification. We use only 
dual Cortex A9 cores in our experiments. The operation 
system runs Linux and supports symmetric multiprocessing 
(SMP). In our implementation, all the threading and 
synchronization use Linux pthread API, including 
pthread_xxx(), sem_xxx(), pthread_mutex_xxx(). 

The test cases for this experiment are 20 H.264 high 
profile bitstream with CABAC in 1280x720 resolution and 
166 frames in average. The original single thread code 
comes from a commercial H.264 decoder, which has been 
optimized by NEON instruction level parallelism. 

Fig. 5 shows the experimental results of a typical case. 
The original single thread code takes 51.6ms to decode a 
frame in average, that is, decode 19.4 frames per second 
(fps). Three fixed functional partitioning from Fig. 1 (a)~(c) 
take 38.5ms, 40.3ms, 37.7ms to decode a frame, and the 
performance are 26.0 fps, 24.8 fps, 26.5 fps, which improve 
only 1.34, 1.28 and 1.37 times respectively. The proposed 
functional partitioning takes 29.9ms to decode a frame, and 
the performance is 33.5 fps, which can improve 1.73 times. 
That is, no matter which fixed functional partitioning is 
selected according to the frame or slice header information, 
the dynamic load balance algorithm will perform better. 

(a)                                  (b) 
Fig. 3. (a)(b) Two ways of intra prediction data 

 

(a)                                            (b)                       (c) 
Fig. 4. The queue level threshold for dynamic load balance 
for (a) inter macroblock and (b)(c) intra macroblock 
 

Table 1. ARM Versatile Express Platform Specification 

 
 

Fig. 5. Execution time of different functional partitioning 
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Fig. 6 shows the average, minimal and maximal speed-up 
ratio of all 20 test cases. The average speed-up ratio is 1.74 
times from all test cases. The minimal speed-up ratio is 1.49 
times from all test frames. This is because, however, the 
frames are too simple, as shown in Fig. 7. Fig. 8 shows that 
the first several frames have low speed-up ratio. The run 
time is fast enough even the speed-up ratio is not high. As 
we can see, the original single thread code takes 51.1ms to 
decode a frame in average, and the performance is 19.6 fps. 
The proposed algorithm takes 29.5ms to decode a frame in 
average, and the performance is 33.9 fps. So the 
experiments show the algorithm can real-time decode H.264 
720p high profile with CABAC on dual Cortex-A9 cores in 
400MHz. 
 

4. CONCLUSION 
 
This paper proposes a novel parallel algorithm for H.264 
decoder using functional partitioning with dynamic load 
balance. The proposed algorithm can also be applied to 
other video format decoders. The data partitioning and 
mixed partitioning algorithm are not suitable to embedded 
system because the cost of extra huge buffer size. The 
buffer size of our proposed algorithm requires only 32 
macroblock for 720p decoder, and is only 1.6% and 1.0% 
buffer size of data partitioning and mixed partitioning 
respectively. The speed-up ratio of our algorithm is 1.74 
times in average compared to original single thread code. 
The experiments show the algorithm can decode H.264 
720p on ARM 400MHz dual Cortex-A9 cores in real time. 
The future work is to extend the algorithm to more multiple 
cores. 
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Fig. 7. First 22 frames of test case with low speed-up ratio 
 

Fig. 8. Test case from Fig. 7 has low speed-up ratio. 

Fig. 6. Average, minimal and maximal speed-up ratio of 
each test case 
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