
A NOVEL PARALLEL H.264 DECODER USING DYNAMIC LOAD BALANCE ON DUAL
CORE EMBEDDED SYSTEM

Ding-Yun Chen, Chen-Tsai Ho, Chi-Cheng Ju, Chung-Hung Tsai

Multimedia Development Division, Mediatek Inc.

No. 1, Dusing Rd. 1, Hsinchu Science Park, Hsinchu, Taiwan
{dynamic.chen, ct.ho, cc.ju, ch.tsai}@mediatek.com

ABSTRACT

The dual-core environment is more and more popular in
embedded system recently. The limited buffer and limited
bandwidth are critical for parallel algorithm in embedded
system. This paper proposes a novel parallel algorithm
using functional partitioning with dynamic load balance for
video decoder. The video decoding flow of each
macroblock is dynamically separated for different cores
according to the buffer queue level. The extra
intercommunication buffer size requires only 1.6% buffer
size of traditional data partitioning algorithm for 720p
decoder. The speed-up ratio is 1.74 times in average
compared to original single thread code. The experiment
result shows the proposed algorithm can real-time decode
H.264 720p high profile on ARM Cortex-A9 400MHz dual-
core system.

Index Terms— parallel algorithms, video codec,
dynamic load balance, H.264 decoder

1. INTRODUCTION

The multi-core system is more popular in embedded system
recently. To improve the performance of existing single
thread software, different parallel algorithms need to design
according to the characteristic of different applications.
Common issues of designing parallel algorithms include
load balance, synchronization overhead, memory access
contention, etc. In embedded system, the communication
buffer size is also an important issue because the embedded
systems are characterized by limited memory and limited
bandwidth.

Most existing video standard didn’t design for parallel
computing, so the data dependencies exist in most video
format. Several parallel algorithms using different level
partitioning are proposed to avoid the data dependencies.
The frame level partitioning is not suitable for the
embedded system because the inter prediction and buffer
size limitation. The open source FFmpeg [10] uses slice
level partitioning. However, only MPEG-2 format is useful
because MPEG-2 standard defines each MB row is an

individual slice. Other video standard, such as MPEG-4,
H.264, etc., didn’t force multiple slices within a frame.
Unfortunately, most commercial bitstream are only one slice
within a frame, so the slice level partitioning cannot speed-
up in a multi-core system in most cases. The macroblock
level partitioning is more suitable for most cases, but data
dependencies of left, top-left, top, and top-right macroblock
should be considered. In addition, the entropy decoding
must be in raster scan order. Those data dependencies of
macroblock level cause the challenge of the parallel
algorithms for video decoder.

The parallel algorithms using macroblock level can be
broadly divided into three different partitioning categories:
functional partitioning, data partitioning and mixed
partitioning [1]. The functional partitioning takes each
thread as a distinct function in a pipelined fashion, and
communicates between tasks in an explicit way. The data
partitioning use different threads to execute the same
function for different parts of input data simultaneously.
The mixed partitioning combines the functional partitioning
and data partitioning, and processes functional parallelism at
coarse granularity and applies data parallelism inside those
granularities. In embedded system, the major problem of
data partitioning [6], [7] and mixed partitioning [8], [9] is
the communication buffer size. The data partitioning needs
a VLD buffer in double whole frame size because each
VLD coefficient needs two bytes to store. The mixed
partitioning needs more communication buffer including a
VLD buffer and a prediction buffer in triple whole frame
size.

For functional partitioning, Seitner et al. [2], [3] divide
the video decoder functionality into a parsing part and a
reconstruction part for dual-core environment. A high level
simulation is proposed to estimate the performance. Y. Kim
et al. [4] propose dynamic load balance in functional
partitioning, which off-load the motion compensation to
another core if the previous macroblock is in bi-directional
inter prediction mode. However, quarter frame buffer size is
required for their pipeline structure. M. Kim et al. [5]
propose dynamic load balancing method for the functional
partitioning to their own dual-core DSP. Their whole system
consists of the dual-core DSP, VLD hardware, MC

2313978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

hardware, deblocking hardware and a SDRAM. So, the
dual-core DSP handle only few parts of video decoder flow.
The first DSP core can offload inverse
transformation/quantization for intra macroblock or
boundary strength calculation for inter macroblock from
second DSP core if the communication buffer level is larger
than threshold. In this paper, we propose a novel functional
partitioning algorithm using dynamic load balance for pure
software video decoder. The intercommunication buffer is
to communicate between dual cores, and requires only 32
macroblock for 720p decoder, which is less than 2% buffer
size of the data partitioning and the mixed partitioning.

2. FUNCATIONAL PARTITIONING WITH
DYNAMIC LOAD BALANCE

The main idea of the proposed algorithm is that the video
decoding flow of each macroblock is dynamically separated
for different cores according to the communication buffer
level. The separation should consider the data dependencies
of different sub-module in different macroblock. Section 2.2
describes the algorithm to avoid the data dependencies
when separating the decoding flow.

2.1. The proposed decoding flow

The video decoding flow can be divided into four sub-
module: entropy decoding (VLD), inverse quantization and
transformation part (IQ/IT), prediction (PRED) and
deblocking (DBK). In dual-core system, it’s intuitive to
have three different ways for fixed functional partitioning,
as shown in Fig. 1 (a)~(c). However, the executed time of
each sub-module is variable according to the input bitstream.
The fixed functional partitioning will face the load
imbalance of different cores.

Dynamic load balance is one of the best approaches to
solve the load imbalance. For dual core, Fig. 2 shows the
combination of three different partitioning ways from Fig.
1(a)~(c). The CPU 0 can dynamically select one of the three
partitioning ways for each macroblock according to the
buffer queue level. When the queue level is low or empty,

CPU 0 needs to finish the job quickly and send it to the
queue to avoid CPU 1 waiting for queue. On the other hand,
when the queue level is high, it means the CPU 1 is too
busy, so the CPU 0 can do more to offload the job from
CPU 1.

The buffer queue is for sending the data and information
from CPU 0 to CPU 1. Each buffer queue slot includes a
flag, macroblock header information and the macroblock
data. The CPU 1 read the flag to know what is the
partitioning of this macroblock by CPU 0. The macroblock
data can be the result of VLD or IT or PRED according to
the flag. The PRED result from CPU 0 can also put to
output buffer directly. In our implementation, the buffer size
of each queue slot is 1420 bytes.

The size of buffer queue should be less than a
macroblock row so that the data dependencies need not to
check to reduce synchronization overhead. That is, the small
queue size can ensure top-left, top and top-right macroblock
are already done when queue is available to push or pop.
Another advantage of the small queue size is to reduce the
external memory bandwidth and latency, which is important
especially in embedded system. That is, the whole buffer
queue can be hold inside L1/L2 cache so the data
communication between two CPUs is via hardware cache
coherence. In our implementation, the queue size is 32
macroblock for 720p decoder, and the total communication
buffer size requires only 44.4 Kbytes. The extra required
buffer size is quite small when comparing with other
parallel algorithms. For 720p decoding, the data partitioning
[6] and mixed partitioning [8], [9] require 2.64 Mbytes and
3.96 Mbytes respectively. So, the buffer size of the
proposed algorithm for 720p decoder is 1.6% and 1.0%
buffer size of data partitioning and mixed partitioning
respectively.

2.2. Partitioning for prediction data dependencies

The proposed dynamic partitioning algorithm has large
scalability for each core. That is, the CPU 0 can do from
VLD only to VLD/IQ/IT/PRED, and the CPU 1 can do from
IQ/IT/PRED/DBK to DBK only. Most previous works of
dynamic load balance in video decoder only offload a small
function. For example, parts of motion compensation are
divided to other core for dynamic load balance in [4]. IQ/IT
for intra macroblock or boundary strength calculation for
inter macroblock are offloaded to other core for dynamic
load balance in [5]. The advantage of our large scalability of

 (a)

 (b)

 (c)
Fig. 1. (a)~(c) Three kinds of different fixed functional
partitioning for dual-core system

Fig. 2. Functional partitioning with dynamic load balance

2314

dynamic partitioning is the load balance for different kinds
of input bitstream. However, the large scalable partitioning
has several data dependencies especial in PRED sub-module.

First, to decouple VLD with other sub-module, the
motion vector prediction and intra mode prediction should
be calculated together with VLD. This is because the results
needs by VLD sub-module for next macroblock. As a result,
VLD sub-module in CPU 0 can go ahead and doesn’t care if
the prediction of left macroblock is done or not.

Next, the intra prediction needs to reference the PRED
result of top macroblock row before DBK. Fig. 3 (a) shows
one method that the DBK always delay one macroblock row,
and Fig. 3 (b) shows another method that the PRED backup
one pixel row of top macroblock row before doing DBK. In
this case, the DBK has to always delay only one macroblock
because the intra prediction also needs to reference the
PRED result of left macroblock. In our implementation, we
use the later one because our experiment shows the later one
perform slight better.

Finally, because the intra prediction needs to reference
the PRED result of left macroblock, the partitioning
criterion should make sure the PRED of left macroblock and
current intra macroblock run in the same CPU. On the other
word, if CPU 1 does PRED of left macroblock and CPU 0
does PRED of current macroblock in intra prediction, the
CPU 0 needs to check if left macroblock is done from CPU1.
To reduce the synchronization overhead, once CPU 0
partition PRED to CPU 1, the PRED of residual right
macroblock in the same macroblock row needs also to
partition to CPU 1 if the macroblock is in intra. The inter
macroblock has no this limitation, and can be partitioned
into different CPUs according to queue level.

Fig. 4 shows the queue level threshold of the dynamic
functional partitioning. For inter macroblock, CPU 0 will do
VLD only if the queue level is less than 1/3 queue size, and
do VLD/IQ/IT if the queue level is within 1/3~2/3 queue
size, and do VLD/IQ/IT/PRED if the queue level is larger
than 2/3 queue size. For intra macroblock, the threshold
moves from 2/3 to 1/2 for PRED to keep more PRED in

CPU 0 if the queue level is higher than 1/2. Fig. 4 (c) shows
once PRED is assigned by CPU1, CPU 0 never does PRED
in the same macroblock row for intra macroblock.

3. EXPERIMENTAL RESULTS

The experiments run on the ARM Versatile Express
platform [11], which including Cortex-A9 quad-core with
NEON. Table 1 shows the detail specification. We use only
dual Cortex A9 cores in our experiments. The operation
system runs Linux and supports symmetric multiprocessing
(SMP). In our implementation, all the threading and
synchronization use Linux pthread API, including
pthread_xxx(), sem_xxx(), pthread_mutex_xxx().

The test cases for this experiment are 20 H.264 high
profile bitstream with CABAC in 1280x720 resolution and
166 frames in average. The original single thread code
comes from a commercial H.264 decoder, which has been
optimized by NEON instruction level parallelism.

Fig. 5 shows the experimental results of a typical case.
The original single thread code takes 51.6ms to decode a
frame in average, that is, decode 19.4 frames per second
(fps). Three fixed functional partitioning from Fig. 1 (a)~(c)
take 38.5ms, 40.3ms, 37.7ms to decode a frame, and the
performance are 26.0 fps, 24.8 fps, 26.5 fps, which improve
only 1.34, 1.28 and 1.37 times respectively. The proposed
functional partitioning takes 29.9ms to decode a frame, and
the performance is 33.5 fps, which can improve 1.73 times.
That is, no matter which fixed functional partitioning is
selected according to the frame or slice header information,
the dynamic load balance algorithm will perform better.

(a) (b)
Fig. 3. (a)(b) Two ways of intra prediction data

(a) (b) (c)
Fig. 4. The queue level threshold for dynamic load balance
for (a) inter macroblock and (b)(c) intra macroblock

Table 1. ARM Versatile Express Platform Specification

Fig. 5. Execution time of different functional partitioning

2315

Fig. 6 shows the average, minimal and maximal speed-up
ratio of all 20 test cases. The average speed-up ratio is 1.74
times from all test cases. The minimal speed-up ratio is 1.49
times from all test frames. This is because, however, the
frames are too simple, as shown in Fig. 7. Fig. 8 shows that
the first several frames have low speed-up ratio. The run
time is fast enough even the speed-up ratio is not high. As
we can see, the original single thread code takes 51.1ms to
decode a frame in average, and the performance is 19.6 fps.
The proposed algorithm takes 29.5ms to decode a frame in
average, and the performance is 33.9 fps. So the
experiments show the algorithm can real-time decode H.264
720p high profile with CABAC on dual Cortex-A9 cores in
400MHz.

4. CONCLUSION

This paper proposes a novel parallel algorithm for H.264
decoder using functional partitioning with dynamic load
balance. The proposed algorithm can also be applied to
other video format decoders. The data partitioning and
mixed partitioning algorithm are not suitable to embedded
system because the cost of extra huge buffer size. The
buffer size of our proposed algorithm requires only 32
macroblock for 720p decoder, and is only 1.6% and 1.0%
buffer size of data partitioning and mixed partitioning
respectively. The speed-up ratio of our algorithm is 1.74
times in average compared to original single thread code.
The experiments show the algorithm can decode H.264
720p on ARM 400MHz dual Cortex-A9 cores in real time.
The future work is to extend the algorithm to more multiple
cores.

5. REFERENCES

[1] J. Eijndhoven, J. Hoogerbrugge, M.N. Jayram, P. Stravers and
A. Terechko, "Cache-Coherent Heterogeneous Multiprocessing as
Basis for Streaming Applications", Dynamic and Robust
Streaming in and between Connected Consumer-Electronic
Devices, vol. 3, pp. 61-80, SpringerLink, 2005.

[2] F. H. Seitner, R. M. Schreier, M. Bleyer and M. Gelautz, "A
macroblock-level analysis on the dynamic behaviour of an H.264
decoder", Proc. of IEEE Intl. Symp. on Consumer Electronics
(ISCE), pp. 1-5, June 2007.
[3] F. H. Seitner, M. Bleyer, M. Gelautz, R. M. Beuschel,
"Development of a High-Level Simulation Approach and Its
Application to Multicore Video Decoding", IEEE Trans. on
Circuits and Systems for Video Technology, vol. 19, no. 11,
pp.1667-1679, Nov. 2009.
[4] Y. Kim, J.-T. Kim, S. Bae, H. Baik and H. J. Song, “H.264
decoder on embedded dual core with dynamically load-balanced
functional partitioning”, Proc. of IEEE Intl. Conf. on Multimedia
and Expo (ICME), pp. 1001-1004, Apr 2008.
[5] M. Kim, J. Song, D. Kim and S. Lee, "H.264 decoder on
embedded dual core with dynamically load-balanced functional
paritioning", Proc. of IEEE Intl. Conf. on Image Processing (ICIP),
pp. 3749-3752, Sept 2010.
[6] E. B. Van Der Tol, E. G.T. Jaspers, and R. H. Gelderblom,
"Mapping of H.264 decoding on a multiprocessor architecture",
Proc. of the SPIE, vol. 5022, pp. 707–718, May 2003.
[7] C. Meenderinck, A. Azevedo, M. Alvarez, B. Juurlink and A.
Ramirez, "Parallel Scalability of H.264", Proc. of workshop on
Programmability issues for multicore computers (MULTIPROG),
jan 2008.
[8] K. Nishihara, A. Hatabu and T. Moriyoshi, "Parallelization of
H.264 video decoder for embedded multicore processor", Proc. of
IEEE Intl. Conf. on Multimedia and Expo (ICME), pp. 329-332,
Apr 2008.
[9] K.-H. Sihn, H. Baik, J.-T. Kim, S. Bae and H. J. Song, "Novel
approaches to parallel H.264 decoder on symmetric multicore
systems", Proc. of IEEE Intl. Conf. on Acoustics, Speech and
Signal Processing (ICASSP), pp, 2017-2020, Apr 2009.
[10] The FFmpeg website. [Online]. Available: http://ffmpeg.org/
[11] The ARM Versatile Express platforms. [Online]. Available:
http://www.arm.com/products/tools/development-boards/versatile-
express/index.php

Fig. 7. First 22 frames of test case with low speed-up ratio

Fig. 8. Test case from Fig. 7 has low speed-up ratio.

Fig. 6. Average, minimal and maximal speed-up ratio of
each test case

2316

